dcsimg

Associations

provided by Animal Diversity Web

Several species of beetles and mites are predators of houseflies, including histerid beetles Carcinops pumilio and Dendrophilus xavieria, muscid flies, and the macrochelid mites Glyptholapsis confusa and Macrocheles muscaedomesticae. Macrocheles muscaedomesticae is attracted to the odor of manure found on houseflies.

Known Predators:

  • histerid beetles (Carcinops pumilio)
  • histerid beetles (Dendrophilus xavieria)
  • musid flies (Ophyra aenescens)
  • macrochelid mites (Glyptholapsis confusa)
  • macrochelid mites (Macrocheles muscaedomesticae)
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Morphology

provided by Animal Diversity Web

Adult houseflies have short antennae, a gray thorax with four darker longitudinal stripes, and a gray or yellow abdomen with a darker median line and irregular pale yellowish spot at the anterior lateral margins. The abdomen consists of 8 segments in males and 9 segments in females. In females, the first 5 segments are visible externally. The last 4 segments are normally retracted but they extend to make the ovipositor when the female lays her eggs. This allows females to bury the eggs several mm below the surface. Females are slightly larger than males. Like all flies (Diptera), houseflies have only one pair of wings. The second pair is reduced to halteres, which are used for balance. Their wings are translucent and fold back straight at rest. Houseflies are 4 to 8 mm long, and 6.35 mm long on average.

Like many flies (Diptera), mouthparts of adults are sponge-like. Mouthparts are comprised of two fleshy, grooved lobes called the labella, which are attached to the lower lip, known as the labium. The lower surface of these lobes contains numerous transverse grooves that serve as liquid food channels. Houseflies can only intake food in liquid form. The mouthparts are suspended from the rostrum, which is a membranous projection of the lower part of the head. The larvae have mouth hooks used to filter-feed on masses of bacteria.

Fully-grown larvae are 12 to 13 mm long and are a yellowish, white color. Their bodies are smooth and shiny. They have a pointed anterior end, a blunt posterior end, and two spiracles. A small patch of small spines lies ventrally between abdomen 1 and 7 but is absent on the thoracic segments.

Average mass: .012 g.

Range length: 4 to 8 mm.

Average length: 6.35 mm.

Range wingspan: 13 to 15 mm.

Other Physical Features: ectothermic ; heterothermic ; bilateral symmetry

Sexual Dimorphism: female larger

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Life Expectancy

provided by Animal Diversity Web

Range lifespan
Status: wild:
60 (high) days.

Typical lifespan
Status: wild:
15 to 25 days.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Habitat

provided by Animal Diversity Web

Houseflies live in both urban and rural areas, especially where humans are present. Because human garbage and feces are the most preferred source for larvae development, houseflies are most associated with urban areas. Specifically, dung heaps, garbage cans, and mammalian road kill are the best environments for larvae to develop. Other breeding mediums include rotten fruit and vegetables, old broth, boiled eggs, and even rubber.

Houseflies are primarily found in temperate regions. They are most abundant during the warm seasons, but some adults may survive through the winter season in temperate areas. They are most active and live longest in temperatures between 10 and 26.6 degrees Celsius. Adult houseflies are inactive at temperatures below 7.2 degrees Celsius and die when temperatures go below 0 degrees Celsius or above 44.4 degrees Celsius. Extreme temperatures are most dangerous to the life of houseflies when the humidity is high. Feeding larvae prefer temperatures between 30 and 35 degrees Celsius.

Habitat Regions: temperate ; tropical ; terrestrial

Other Habitat Features: urban ; suburban ; agricultural

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Distribution

provided by Animal Diversity Web

Houseflies are found almost anywhere, especially in areas that humans also inhabit. They are believed to have originated in temperate regions of the Eastern Hemisphere.

Biogeographic Regions: nearctic (Introduced ); palearctic (Native ); oriental (Introduced ); ethiopian (Introduced ); neotropical (Introduced ); australian (Introduced ); oceanic islands (Introduced )

Other Geographic Terms: cosmopolitan

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Trophic Strategy

provided by Animal Diversity Web

The main food sources of houseflies are milk, sugar, blood, feces, and decaying organic matter such as fruits and vegetables. Houseflies also require a source of water. Larvae also eat paper and textile materials such as wool, cotton, and sacking if it is kept moist and at suitable temperatures.

Animal Foods: blood; body fluids; carrion

Plant Foods: fruit

Other Foods: dung

Primary Diet: carnivore (Scavenger ); coprophage

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Behavior

provided by Animal Diversity Web

Perception channels in houseflies include olfactory, tactile, vision, and chemical signals such as pheromones. Olfactory senses are used extensively to find food. Chemical sensations from their olfactory system create an electrophysiological response on the antennae. Researchers observe the electrical spikes in the stimulation of olfactory cells on their antennae to determine if the housefly under study is attracted or repelled by an odor. Humans have taken advantage of this trait, developing commercial repellents with odors they find unpleasant.

Houseflies taste food through taste hairs, many of which are located on their feet. Other hairs used to sense air flow are located all over their body. This sense allows them to avoid obstacles while flying. Compound eyes also give them a keen sense of sight and the ability to recognize lights and motions. In mating, houseflies communicate through pheromones.

Adult houseflies are attracted to soil or animal feces that has chemicals called metabolites in it from other larvae. This signifies a high concentration of nutrients, so larvae in those locations are likely to survive. In this way, females are capable of perception of larval density.

Communication Channels: acoustic ; chemical

Other Communication Modes: pheromones

Perception Channels: visual ; tactile ; acoustic ; chemical

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Conservation Status

provided by Animal Diversity Web

Houseflies are highly abundant and not threatened or endangered.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Life Cycle

provided by Animal Diversity Web

Houseflies undergo complete metamorphosis consisting of an egg, larva or maggot, pupal, and adult stage. Houseflies can complete their life cycle in as little as 7 to 10 days, so as many as 10 to 12 generations may occur in one summer. In North America and Europe, houseflies are common from July through September. In South America and Australia, they are most common from October to February or March.

In warm weather, housefly larvae hatch within 8 to 12 hours. In cooler weather, hatching takes up to 24 hours. Once the larvae hatch, they burrow into feces with their two mouth hooks and take up nutrients from the material. It takes 5 days for the larvae to completely develop. Larvae survive best in compost mixtures of decaying vegetables enriched with dung or animal material. This is why larvae are commonly found in garbage. Larvae prefer pig, horse, and human feces as opposed to cow feces, which is preferred by face flies (Musca autumnalis). Prior to pupation, larvae migrate for up to 3 to 4 days to a dry area. Once the larva fully develops, it is a pupa for 4 days.

Egg and larva densities are important factors in determining where females lay their eggs. Females tend to lay their eggs in locations with many other larvae are present, because this signals that the medium is rich in nutrients. The more nutrients larvae are exposed to, the larger adults they will become. Areas with low larvae density signal low levels of nutrients, whereas too high of a density means that nutrients are depleted. Intermediate density is the most favorable growing condition for larvae.

Several mechanisms exist for sex determination in houseflies: male heterogamy (the presence of a Y chromosome makes an individual male), a dominant autosomal male determining factor, a dominant autosomal female determining factor, a maternal effect factor "Ag" (where Ag/+ females produce only sons, +/+ females produce only daughters, and Ag/Ag means the female will die), and also an epigenetic male determiner (the interaction between another gene and female genes of the egg can result in a male offspring). Sex determination also depends on the mother's age and temperature. Because houseflies exhibit many mechanisms for sex determination, geneticists and other scientists study houseflies to understand sex determination. The sex ratio of male to female houseflies is always roughly 1:1.

Development - Life Cycle: metamorphosis

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Houseflies are perhaps the most widespread insect pest and are especially pervasive pests to humans. They may lay their eggs in human feces, where the maggots can filter feed on nutrient rich waste material. The feces of houseflies can spread typhoid fever, amoebic and bacillary dysentery, diarrhea, cholera, pinworm, tapeworm, hookworms (Necator americanus and Ncylostoma duodenal, yaws, anthrax, Cryptosporidium parvum, and some forms of conjunctivitis. Houseflies do not bite.

Negative Impacts: injures humans (carries human disease); crop pest; household pest

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Benefits

provided by Animal Diversity Web

Houseflies decompose decaying matter.

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Associations

provided by Animal Diversity Web

The primary ecosystem role of houseflies is decomposition and recycling of organic material. Houseflies are closely associated with humans, drawn to urban areas and high densities of human waste and garbage that is their food. They do not associate with many other species. They avoid competition with other species of Muscidae by feeding on feces from different types of animals. Houseflies are loosely associated with dung beetles (xxxx xxxx). Dung beetles disturb dung and disturb housefly larvae living in the dung, limiting reproduction.

Housefly larvae compete with fungi for nutrients because both grow in manure. A particular strain of bacteria, Klebsiella oxytoca, is known to reduce fungi growth in manure. This bacteria competes with the fungus for other nutrients in the manure and also releases antifungal chemicals that inhibit the growth of fungi. Thus, K. oxytoca makes more nutrients available to the houseflies. Studies have found K. oxytoca on the surface of housefly eggs.

Several species of beetles and mites feed on houseflies. Humans may use housefly larvae or pupae to feed domesticated animals. In China, the larvae and pupae of houseflies can be used as food for fish, poultry, pigs, and farm-grown mink. The use of insects as food for domestic animals is a cost-effective alternative to other conventional fish diets.

Ecosystem Impact: pollinates; biodegradation

Mutualist Species:

  • bacteria (Klebsiella oxytoca)
license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Reproduction

provided by Animal Diversity Web

Houseflies exhibit a polygynous mating system. Males seek to mate with many females. The females generally seek to only mate with one male since this is sufficient to lay all the eggs in her life. In rare instances, females mate with more than one male.

Mating System: polygynous

Male and female adult flies are able to mate by the time they are 16 and 24 hours old, respectively. The mating process is mainly the responsibility of the male. The courtship ritual includes orientation, landing, wing-out, leg-up, head lapping, head touching, boxing, backing, genital orientation, genital contact, and copulation. The female may avoid the male at any time, specifically if she has mated before. The female’s main role is to decide whether to accept or decline the male’s mating request by extending her ovipositor to the male or not.

The process of mating begins when the male strikes the female. One strike takes 1 to 9 seconds to occur. Striking may occur while both flies are in flight or while resting on the ground. A strike occurring on the ground involves the male jumping on the female. If the strike occurs in the air, both flies immediately fall to a surface. As the strike is occurring, the male forces the female’s wings open so they are horizontal, and her wings vibrate. This vibration is often accompanied by a loud buzzing sound. As the female’s wings come out, the male then strokes or caresses the head of the female. Females may avoid the strike by darting and flying away, and she can avoid the caress by shaking violently.

Females may then accept or reject copulation. A virgin female readily copulates and thrusts her ovipositor into the male genital opening. A female that has mated before will more likely be passive towards copulation or resist it. In both of these cases, the male leaves. Mating lasts 30 minutes to 2 hours.

Striking may also occur between two males because some male houseflies have incomplete sex recognition, and also because females exhibit low levels of sex pheromones. Males may also strike inanimate objects. This is possibly because dark toned objects trigger housefly courtship. The amount of sex pheromones in males does not affect how successful they are at mating.

Houseflies reproduce at an extremely high rate relative to other species of flies. Females lay oval, white eggs on moist animal feces, excrement, and garbage, preferably that is exposed to light. A female lays approximately 500 eggs throughout her life. The female will deposit these eggs in 5 to 6 batches of 75 to 150 eggs over the course of 3 to 4 days. Females can lay all of their eggs after fertilization by just one male. At birth, larvae weigh .008 to .02 g.

Breeding interval: Females lay 5 to 6 batches of eggs over the course of 3 to 4 days.

Breeding season: Houseflies can breed year-round, but most often in the summer from June through October. The peak breeding months are July, August, and September.

Range eggs per season: 75 to 150.

Average gestation period: 24 hours.

Range age at sexual or reproductive maturity (female): 24 (low) hours.

Range age at sexual or reproductive maturity (male): 16 (low) hours.

Key Reproductive Features: year-round breeding ; gonochoric/gonochoristic/dioecious (sexes separate); sexual ; fertilization (Internal ); oviparous

Female houseflies exhibit minimal parental investment by choosing a moist, nutritious material to deposit her eggs in. After depositing her eggs, the female does not care for or interact with her eggs or larva again. Males do not exhibit any parental investment.

Parental Investment: female parental care ; pre-fertilization (Provisioning, Protecting: Female)

license
cc-by-nc-sa-3.0
copyright
The Regents of the University of Michigan and its licensors
bibliographic citation
Doctor, J. 2013. "Musca domestica" (On-line), Animal Diversity Web. Accessed April 27, 2013 at http://animaldiversity.ummz.umich.edu/site/accounts/information/Musca_domestica.html
author
Jonelle Doctor, University of Michigan-Ann Arbor
editor
Catherine Kent, Special Projects
original
visit source
partner site
Animal Diversity Web

Biology

provided by Arkive
House flies contaminate food, and in developing countries are responsible for millions of infant deaths per year as a result of dehydration caused by diarrhoea (5). House flies undergo 'complete metamorphosis'; the larvae (maggots) progress through three stages known as 'instars' before a pupal stage develops in which complex changes take place as the body of the maggot re-organises into the adult fly (4). Adults feed on rotting plant and animal matter and sugary liquids. They repeatedly salivate on food, ingest it and regurgitate it in order to pre-digest the food (4).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Conservation

provided by Arkive
Not relevant.
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Description

provided by Arkive
The house fly is, perhaps, the most common and widespread animal in the world (3). It is a serious pest, which spreads many disease-causing pathogens including Salmonella, anthrax and polio (4). It is greyish in colour with four dark stripes along the back (4). Like all flies it has one pair of membranous 'true' wings; the second pair of wings are modified into drumstick-like appendages known as 'halteres', which are used in balance. The sponge-like mouthparts are adapted for feeding on liquids, and the reddish compound eyes are large (5).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Habitat

provided by Arkive
Occurs in a wide range of habitats, and is often associated with human activities (1); tends to breed in manure and decomposing material (3).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Range

provided by Arkive
This species is ubiquitous throughout Britain and is found in many parts of the world (3).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Status

provided by Arkive
Very common and widespread (1).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Threats

provided by Arkive
This species is not threatened. It is subject to control measures in some areas as it can be a serious pest (6).
license
cc-by-nc-sa-3.0
copyright
Wildscreen
original
visit source
partner site
Arkive

Associations

provided by BioImages, the virtual fieldguide, UK
Animal / dung associate
larva of Musca domestica inhabits dung of Mammalia

Foodplant / debris feeder
larva of Musca domestica feeds on decaying debris of Magnoliopsida

license
cc-by-nc-sa-3.0
copyright
BioImages
project
BioImages

Brief Summary

provided by EOL authors
The housefly, Musca domestica, is the most common of domestic flies. Originally from central Asia, they are now one of the most widely distributed insects, found associated with humans all over the world. Houseflies feed and breed in animal feces and garbage, and also commonly visit human foods. Their legless maggots feed directly on the material in which the eggs were laid. Adult flies have sponge-sucking mouthparts that allow them to eat only liquid foods; they eject saliva to break down solid foods. Although they do not bite, this species is a problematic pest as a vector for more than 100 serious pathogens (viruses, bacteria, fungi, protozoa, and nematodes), including those causing typhoid, cholera, salmonellosis, dysentery, tuberculosis, anthrax, and parasitic worms, carried to human food on the fly’s body parts or in its regurgitations or defecations. Control of houseflies especially in poor countries with inadequate sewage facilities and sanitation is an important public health concern. Houseflies breed readily, a female can lay up to 500 eggs, and in tropical areas this species undergoes up to 20 generations/year. Two other fly species are similar and often confused with the housefly: Fannia canicularis, the lesser housefly and the stable fly, Stomoxys calcitrans. (Sanchez-Arroyo and Capinera 2008; Wikipedia 2011)

license
cc-by-sa-3.0
original
visit source
partner site
EOL authors

Brief Summary

provided by EOL authors
The housefly Musca domestica, is the most common of domestic flies. Originally from central Asia, they are now one of the most widely distributed insects, found associated with humans all over the world. Houseflies feed and breed in animal feces and garbage, and also commonly visit human foods. Their legless maggots feed directly on the material in which the eggs were laid. Adult flies have sponge-sucking mouthparts that allow them to eat only liquid foods; they eject saliva to break down solid foods. Although they do not bite, this species is a problematic pest as a vector for more than 100 serious pathogens (viruses, bacteria, fungi, protozoa, and nematodes), including those causing typhoid, cholera, salmonellosis, dysentery, tuberculosis, anthrax, and parasitic worms, carried to human food on the fly’s body parts or in its regurgitations or defecations. Control of houseflies especially in poor countries with inadequate sewage facilities and sanitation is an important public health concern. Houseflies breed readily, a female can lay up to 500 eggs, and in tropical areas this species undergoes up to 20 generations/year. Two other fly species are similar and often confused with the housefly: Fannia canicularis, the lesser housefly and the stable fly, Stomoxys calcitrans. (Sanchez-Arroyo and Capinera 2008; Wikipedia 2011)

license
cc-by-sa-3.0
original
visit source
partner site
EOL authors

Housefly

provided by wikipedia EN

The housefly (Musca domestica) is a fly of the suborder Cyclorrhapha. It is believed to have evolved in the Cenozoic Era, possibly in the Middle East, and has spread all over the world as a commensal of humans. It is the most common fly species found in houses. Adults are gray to black, with four dark, longitudinal lines on the thorax, slightly hairy bodies, and a single pair of membranous wings. They have red eyes, set farther apart in the slightly larger female.

The female housefly usually mates only once and stores the sperm for later use. She lays batches of about 100 eggs on decaying organic matter such as food waste, carrion, or feces. These soon hatch into legless white larvae, known as maggots. After two to five days of development, these metamorphose into reddish-brown pupae, about 8 millimetres (38 inch) long. Adult flies normally live for two to four weeks, but can hibernate during the winter. The adults feed on a variety of liquid or semi-liquid substances, as well as solid materials which have been softened by their saliva. They can carry pathogens on their bodies and in their feces, contaminate food, and contribute to the transfer of food-borne illnesses, while, in numbers, they can be physically annoying. For these reasons, they are considered pests.

Houseflies have been used in the laboratory in research into aging and sex determination. Houseflies appear in literature from Ancient Greek myth and Aesop's The Impertinent Insect onwards. Authors sometimes choose the housefly to speak of the brevity of life, as in William Blake's 1794 poem "The Fly", which deals with mortality subject to uncontrollable circumstances.[1]

Description

Head of a female housefly with two large compound eyes and three ocelli

Adult houseflies are usually 6 to 7 mm (14 to 932 in) long with a wingspan of 13 to 15 mm (12 to 1932 in). The females tend to be larger winged than males, while males have relatively longer legs. Females tend to vary more in size[2] and there is geographic variation with larger individuals in higher latitudes.[3] The head is strongly convex in front and flat and slightly conical behind. The pair of large compound eyes almost touch in the male, but are more widely separated in the female. They have three simple eyes (ocelli) and a pair of short antennae.[4] Houseflies process visual information around seven times more quickly than humans, enabling them to identify and avoid attempts to catch or swat them, since they effectively see the human's movements in slow motion with their higher flicker fusion rate.[5][6]

Housefly mouthparts, showing the pseudotracheae, semitubular grooves (dark parallel bands) used for sucking up liquid food

The mouthparts are specially adapted for a liquid diet; the mandibles and maxillae are reduced and not functional, and the other mouthparts form a retractable, flexible proboscis with an enlarged, fleshy tip, the labellum. This is a sponge-like structure that is characterized by many grooves, called pseudotracheae, which suck up fluids by capillary action.[7][8] It is also used to distribute saliva to soften solid foods or collect loose particles.[9] Houseflies have chemoreceptors, organs of taste, on the tarsi of their legs, so they can identify foods such as sugars by walking over them.[10] Houseflies are often seen cleaning their legs by rubbing them together, enabling the chemoreceptors to taste afresh whatever they walk on next.[11] At the end of each leg is a pair of claws, and below them are two adhesive pads, pulvilli, enabling the housefly to walk up smooth walls and ceilings using Van der Waals forces. The claws help the housefly to unstick the foot for the next step. Houseflies walk with a common gait on horizontal and vertical surfaces with three legs in contact with the surface and three in movement. On inverted surfaces, they alter the gait to keep four feet stuck to the surface.[12] Houseflies land on a ceiling by flying straight towards it; just before landing, they make a half roll and point all six legs at the surface, absorbing the shock with the front legs and sticking a moment later with the other four.[13]

A housefly wing under 250x magnification

The thorax is a shade of gray, sometimes even black, with four dark, longitudinal bands of even width on the dorsal surface. The whole body is covered with short hairs. Like other Diptera, houseflies have only one pair of wings; what would be the hind pair is reduced to small halteres that aid in flight stability. The wings are translucent with a yellowish tinge at their base. Characteristically, the medial vein (M1+2 or fourth long vein) shows a sharp upward bend. Each wing has a lobe at the back, the calypter, covering the haltere. The abdomen is gray or yellowish with a dark stripe and irregular dark markings at the side. It has 10 segments which bear spiracles for respiration. In males, the ninth segment bears a pair of claspers for copulation, and the 10th bears anal cerci in both sexes.[4][14]

Micrograph of the tarsus of the leg showing claws and bristles, including the central one between the two pulvilli known as the empodium

A variety of species around the world appear similar to the housefly, such as the lesser house fly, Fannia canicularis; the stable fly, Stomoxys calcitrans;[14] and other members of the genus Musca such as M. vetustissima, the Australian bush fly and several closely related taxa that include M. primitiva, M. shanghaiensis, M. violacea, and M. varensis.[15]: 161–167  The systematic identification of species may require the use of region-specific taxonomic keys and can require dissections of the male reproductive parts for confirmation.[16][17]

Distribution

The housefly is probably the insect with the widest distribution in the world; it is largely associated with humans and has accompanied them around the globe. It is present in the Arctic, as well as in the tropics, where it is abundant. It is present in all populated parts of Europe, Asia, Africa, Australasia, and the Americas.[4]

Evolution and taxonomy

Though the order of flies (Diptera) is much older, true houseflies are believed to have evolved in the beginning of the Cenozoic Era.[18] The housefly's superfamily, Muscoidea, is most closely related to the Oestroidea (blow flies, flesh flies and allies), and more distantly to the Hippoboscoidea (louse flies, bat flies and allies). They are thought to have originated in the southern Palearctic region, particularly the Middle East. Because of their close, commensal relationship with humans, they probably owe their worldwide dispersal to co-migration with humans.[19]

The housefly was first described as Musca domestica in 1758 based on the common European specimens by the Swedish botanist and zoologist Carl Linnaeus in his Systema naturae and continues to be classified under that name.[20] A more detailed description was given in 1776 by the Danish entomologist Johan Christian Fabricius in his Genera Insectorum.[4]

Life cycle

Houseflies mating

Each female housefly can lay up to 500 eggs in her lifetime, in several batches of about 75 to 150. The eggs are white and are about 1.2 mm (116 in) in length, and they are deposited by the fly in a suitable place, usually dead and decaying organic matter, such as food waste, carrion, or feces. Within a day, larvae (maggots) hatch from the eggs; they live and feed where they were laid. They are pale-whitish, 3 to 9 mm (18 to 1132 in) long, thinner at the mouth end, and legless.[14] Larval development takes from two weeks, under optimal conditions, to 30 days or more in cooler conditions. The larvae avoid light; the interiors of heaps of animal manure provide nutrient-rich sites and ideal growing conditions, warm, moist, and dark.[14]

Housefly larva and adult, by Amedeo John Engel Terzi (1872–1956)

At the end of their third instar, the larvae crawl to a dry, cool place and transform into pupae. The pupal case is cylindrical with rounded ends, about 1.2 mm (116 in) long, and formed from the last shed larval skin. It is yellowish at first, darkening through red and brown to nearly black as it ages. Pupae complete their development in two to six days at 35 °C (95 °F), but may take 20 days or more at 14 °C (57 °F).[14]

When metamorphosis is complete, the adult housefly emerges from the pupa. To do this, it uses the ptilinum, an eversible pouch on its head, to tear open the end of the pupal case. The adult housefly lives from two weeks to one month in the wild, or longer in benign laboratory conditions. Having emerged from the pupa, it ceases to grow; a small fly is not necessarily a young fly, but is instead the result of getting insufficient food during the larval stage.[14]

Male houseflies are sexually mature after 16 hours and females after 24. Females produce a pheromone, (Z)-9-tricosene (muscalure). This cuticular hydrocarbon is not released into the air and males sense it only on contact with females;[13] it has found use as in pest control, for luring males to fly traps.[21][22] The male initiates the mating by bumping into the female, in the air or on the ground, known as a "strike". He climbs on to her thorax, and if she is receptive, a courtship period follows, in which the female vibrates her wings and the male strokes her head. The male then reverses onto her abdomen and the female pushes her ovipositor into his genital opening; copulation, with sperm transfer, lasts for several minutes. Females normally mate only once and then reject further advances from males, while males mate multiple times.[23] A volatile semiochemical that is deposited by females on their eggs attracts other gravid females and leads to clustered egg deposition.[24]

The larvae depend on warmth and sufficient moisture to develop; generally, the warmer the temperature, the faster they grow. In general, fresh swine and chicken manures present the best conditions for the developing larvae, reducing the larval period and increasing the size of the pupae. Cattle, goat, and horse manures produce fewer, smaller pupae, while mature swine manure composted with water content under 30%, approached 100% mortality of the larvae. Pupae can range from about 8–20 milligrams (0.12–0.31 gr) in weight under different conditions.[25]

The life cycle can be completed in seven to ten days under optimal conditions, but may take up to two months in adverse circumstances. In temperate regions, 12 generations may occur per year, and in the tropics and subtropics, more than 20.[14]

Ecology

Housefly pupae killed by parasitoid wasp larvae: Each pupa has one hole through which a single adult wasp has emerged; the wasp larvae fed on the housefly larvae.

Houseflies play an important ecological role in breaking down and recycling organic matter. Adults are mainly carnivorous; their primary food is animal matter, carrion, and feces, but they also consume milk, sugary substances, and rotting fruit and vegetables. Solid foods are softened with saliva before being sucked up.[8] They can be opportunistic blood feeders.[15]: 189  Houseflies have a mutualistic relationship with the bacterium Klebsiella oxytoca, which can live on the surface of housefly eggs and deter fungi which compete with the housefly larvae for nutrients.[26]

Adult houseflies are diurnal and rest at night. If inside a building after dark, they tend to congregate on ceilings, beams, and overhead wires, while out of doors, they crawl into foliage or long grass, or rest in shrubs and trees or on wires.[14] In cooler climates, some houseflies hibernate in winter, choosing to do so in cracks and crevices, gaps in woodwork, and the folds of curtains. They arouse in the spring when the weather warms up, and search out a place to lay their eggs.[27]

Houseflies have many predators, including birds, reptiles, amphibians, various insects, and spiders. The eggs, larvae, and pupae have many species of stage-specific parasites and parasitoids. Some of the more important are the parasitic wasps Muscidifurax uniraptor and Spalangia cameroni; these lay their eggs in the housefly larvae tissue and their offspring complete their development before the adult houseflies can emerge from the pupae.[14] Hister beetles feed on housefly larvae in manure heaps and the predatory mite Macrocheles muscae domesticae consumes housefly eggs, each mite eating 20 eggs per day.[28]

Housefly killed by the pathogenic fungus Entomophthora muscae

Houseflies sometimes carry phoretic (nonparasitic) passengers, including mites such as Macrocheles muscaedomesticae[29] and the pseudoscorpion Lamprochernes chyzeri.[30]

The pathogenic fungus Entomophthora muscae causes a fatal disease in houseflies. After infection, the fungal hyphae grow throughout the body, killing the housefly in about five days. Infected houseflies have been known to seek high temperatures that could suppress the growth of the fungus. Affected females tend to be more attractive to males, but the fungus-host interactions have not been fully understood.[31] The housefly also acts as the alternative host to the parasitic nematode Habronema muscae that attacks horses.[32] A virus that causes enlargement of the salivary glands, salivary gland hypertrophy virus (SGHV), is spread among houseflies through contact with food and infected female houseflies become sterile.[33]

Relationship with humans

Houseflies are a nuisance, disturbing people while at leisure and at work, but they are disliked principally because of their habits of contaminating foodstuffs. They alternate between breeding and feeding in dirty places with feeding on human foods, during which process they soften the food with saliva and deposit their feces, creating a health hazard.[34] However, housefly larvae are as nutritious as fish meal, and could be used to convert waste to insect-based animal feed for farmed fish and livestock.[35] Housefly larvae have been used in traditional cures since the Ming period in China (1386 AD) for a range of medical conditions and have been considered as a useful source of chitosan, with antioxidant properties, and possibly other proteins and polysaccharides of medical value.[36]

Houseflies have been used in art and artifacts in many cultures. In 16th- and 17th-century European vanitas paintings, houseflies sometimes occur as memento mori. They may also be used for other effects as in the Flemish painting, the Master of Frankfurt (1496). Housefly amulets were popular in ancient Egypt.[37][38]

As a disease vector

Housefly lapping up food from a plate

Houseflies can fly for several kilometers from their breeding places,[39] carrying a wide variety of organisms on their hairs, mouthparts, vomitus, and feces. Parasites carried include cysts of protozoa, e.g. Entamoeba histolytica and Giardia lamblia and eggs of helminths; e.g., Ascaris lumbricoides, Trichuris trichiura, Hymenolepis nana, and Enterobius vermicularis.[40] Houseflies do not serve as a secondary host or act as a reservoir of any bacteria of medical or veterinary importance, but they do serve as mechanical vectors to over 100 pathogens, such as those causing typhoid, cholera, salmonellosis,[41] bacillary dysentery,[42] tuberculosis, anthrax, ophthalmia,[43] and pyogenic cocci, making them especially problematic in hospitals and during outbreaks of certain diseases.[40] Disease-causing organisms on the outer surface of the housefly may survive for a few hours, but those in the crop or gut can be viable for several days.[34] Usually, too few bacteria are on the external surface of the houseflies (except perhaps for Shigella) to cause infection, so the main routes to human infection are through the housefly's regurgitation and defecation.[44] A number of bacterial endosymbionts have however been detected in sequence-based identification from whole genome sequences extracted from flies, the greatest numbers being detected in the abdomen.[45]

In the early 20th century, Canadian public health workers believed that the control of houseflies was important in controlling the spread of tuberculosis. A "swat that fly" contest was held for children in Montreal in 1912.[46] Houseflies were targeted in 1916, when a polio epidemic broke out in the eastern United States. The belief that housefly control was the key to disease control continued, with extensive use of insecticidal spraying well until the mid-1950s, declining only after the introduction of Salk's vaccine.[47] In China, Mao Zedong's Four Pests Campaign between 1958 and 1962 exhorted the people to catch and kill houseflies, along with rats, mosquitoes, and sparrows.[48]

In warfare

Philadelphia Department of Health poster warning the public of housefly hazards (c. 1942)

During the Second World War, the Japanese worked on entomological warfare techniques under Shirō Ishii. Japanese Yagi bombs developed at Pingfan consisted of two compartments, one with houseflies and another with a bacterial slurry that coated the houseflies prior to release. Vibrio cholerae, which causes cholera, was the bacterium of choice, and was used in China in Baoshan in 1942, and in northern Shandong in 1943. Baoshan had been used by the Allies and bombing produced epidemics that killed 60,000 people in the initial stages, reaching a radius of 200 kilometres (120 mi) which finally took a toll of 200,000 victims. The Shandong attack killed 210,000; the occupying Japanese troops had been vaccinated in advance.[49]

In waste management

The ability of housefly larvae to feed and develop in a wide range of decaying organic matter is important for recycling of nutrients in nature. This could be exploited to combat ever-increasing amounts of waste.[50] Housefly larvae can be mass-reared in a controlled manner in animal manure, reducing the bulk of waste and minimizing environmental risks of its disposal.[51][52] Harvested maggots may be used as feed for animal nutrition.[52][53]

Control

Detail of a 1742 painting by Frans van der Mijn that uses a housefly in a Renaissance allegory of touch theme

Houseflies can be controlled, at least to some extent, by physical, chemical, or biological means. Physical controls include screening with small mesh or the use of vertical strips of plastic or strings of beads in doorways to prevent entry of houseflies into buildings. Fans to create air movement or air barriers in doorways can deter houseflies from entering, and food premises often use fly-killing devices; sticky fly papers hanging from the ceiling are effective,[44] but electric "bug zappers" should not be used directly above food-handling areas because of scattering of contaminated insect parts.[54] Another approach is the elimination as far as possible of potential breeding sites. Keeping garbage in lidded containers and collecting it regularly and frequently, prevents any eggs laid from developing into adults. Unhygienic rubbish tips are a prime housefly-breeding site, but if garbage is covered by a layer of soil, preferably daily, this can be avoided.[44]

Insecticides can be used. Larvicides kill the developing larvae, but large quantities may need to be used to reach areas below the surface. Aerosols can be used in buildings to "zap" houseflies, but outside applications are only temporarily effective. Residual sprays on walls or resting sites have a longer-lasting effect.[44] Many strains of housefly have become immune to the most commonly used insecticides.[55][56] Resistance to carbamates and organophosphates is conferred by variation in acetylcholinesterase genes.[57] M. domestica has achieved a high degree of resistance. Resistance monitoring is vital to avoid continued use of ineffective a.i.s such as found in the notably severe example of Freeman et al 2019 in Kansas and Maryland, USA.[58]

Several means of biological pest control have been investigated. These include the introduction of another species, the black soldier fly (Hermetia illucens), whose larvae compete with those of the housefly for resources.[59] The introduction of dung beetles to churn up the surface of a manure heap and render it unsuitable for breeding is another approach.[59] Augmentative biological control by releasing parasitoids can be used, but houseflies breed so fast that the natural enemies are unable to keep up.[60]

In science

William Blake's illustration of "The Fly" in Songs of Innocence and of Experience (1794)

The ease of culturing houseflies, and the relative ease of handling them when compared to the fruit fly Drosophila, have made them useful as model organism for use in laboratories. The American entomologist Vincent Dethier, in his humorous To Know A Fly (1962), pointed out that as a laboratory animal, houseflies did not trouble anyone sensitive to animal cruelty. Houseflies have a small number of chromosomes, haploid 6 or diploid 12.[15]: 96  Because the somatic tissue of the housefly consists of long-lived postmitotic cells, it can be used as an informative model system for understanding cumulative age-related cellular alterations. Oxidative DNA damage 8-hydroxydeoxyguanosine in houseflies was found in one study to increase with age and reduce life expectancy supporting the hypothesis that oxidative molecular damage is a causal factor in senescence (aging).[61][62][63]

The housefly is an object of biological research, partly for its variable sex-determination mechanism. Although a wide variety of sex-determination mechanisms exists in nature (e.g. male and female heterogamy, haplodiploidy, environmental factors), the way sex is determined is usually fixed within a species. The housefly is, however, thought to exhibit multiple mechanisms for sex determination, such as male heterogamy (like most insects and mammals), female heterogamy (like birds), and maternal control over offspring sex. This is because a male-determining gene (Mdmd) can be found on most or all housefly chromosomes.[64] Sexual differentiation is controlled, as in other insects, by an ancient developmental switch, doublesex, which is regulated by the transformer protein in many different insects.[65] Mdmd causes male development by negatively regulating transformer. There is also a female-determining allele of transformer that is not sensitive to the negative regulation of Mdmd.[66]

The antimicrobial peptides produced by housefly maggots are of pharmacological interest.[67]

In the 1970s, the aircraft modeler Frank Ehling constructed miniature balsa-wood aircraft powered by live houseflies.[68] Studies of tethered houseflies have helped in the understanding of insect vision, sensory perception, and flight control.[69]

In literature

The Impertinent Insect is a group of five fables, sometimes ascribed to Aesop, concerning an insect, in one version a fly, which puffs itself up to seem important. In the Biblical fourth plague of Egypt, flies represent death and decay, while the Philistine god Beelzebub's name may mean "lord of the flies".[70] In Greek mythology, Myiagros was a god who chased away flies during the sacrifices to Zeus and Athena; Zeus sent a fly to bite Pegasus, causing Bellerophon to fall back to Earth when he attempted to ride the winged steed to Mount Olympus.[71] In the traditional Navajo religion, Big Fly is an important spirit being.[72][73][74]

William Blake's 1794 poem "The Fly", part of his collection Songs of Experience, deals with the insect's mortality, subject to uncontrollable circumstances, just like humans.[75] Emily Dickinson's 1855 poem "I Heard a Fly Buzz When I Died" speaks of flies in the context of death.[76] In William Golding's 1954 novel Lord of the Flies, the fly is, however, a symbol of the children involved.[77]

Ogden Nash's humorous two-line 1942 poem "God in His wisdom made the fly/And then forgot to tell us why." indicates the debate about the value of biodiversity, given that even those considered by humans as pests have their place in the world's ecosystems.[78]

References

  1. ^ "Appendix C: The State Emblem of India (Prohibition of Improper Use) Act, 2005", Righteous Republic, Harvard University Press, p. 257, 2012, doi:10.4159/harvard.9780674067288.c9, ISBN 978-0-674-06728-8
  2. ^ Bryant EH (September 1977). "Morphometric adaptation of the housefly, Musca domestica L., in the United States". Evolution; International Journal of Organic Evolution. 31 (3): 580–596. doi:10.1111/j.1558-5646.1977.tb01046.x. PMID 28563484. S2CID 42268993.
  3. ^ Alves SM, Bélo M (August 2002). "Morphometric variations in the housefly, Musca domestica (L.) with latitude". Genetica. 115 (3): 243–251. doi:10.1023/a:1020685727460. PMID 12440563. S2CID 230309.
  4. ^ a b c d Hewitt CG (2011). The House-Fly: Musca domestica Linn: Its Structure, Habits, Development, Relation to Disease and Control. Cambridge University Press. pp. 5–6. ISBN 978-0-521-23299-9.
  5. ^ Johnston I (15 September 2013). "Q. Why is it so hard to swat a housefly? A. It sees you coming in slow motion". The Independent. Retrieved 4 December 2017.
  6. ^ Healy K, McNally L, Ruxton GD, Cooper N, Jackson AL (October 2013). "Metabolic rate and body size are linked with perception of temporal information". Animal Behaviour. 86 (4): 685–696. doi:10.1016/j.anbehav.2013.06.018. PMC 3791410. PMID 24109147.
  7. ^ Gullan PJ, Cranston PS (2010). The Insects: An Outline of Entomology (4th ed.). Wiley. pp. 41, 519. ISBN 978-1-118-84615-5.
  8. ^ a b Mehlhorn H (2001). Encyclopedic Reference of Parasitology: Biology, Structure, Function. Springer Science & Business Media. p. 310. ISBN 978-3-540-66819-0.
  9. ^ Dessì G (8 January 2017). "Morphology and anatomy of adults: Mouthparts". Flies. Retrieved 27 September 2017.
  10. ^ Deonier CC, Richardson CH (1935). "The Tarsal Chemoreceptor Response of the Housefly, Musca Domestica L., to Sucrose and Levulose". Annals of the Entomological Society of America. 28 (4): 467–474. doi:10.1093/aesa/28.4.467.
  11. ^ Ray CC (17 December 2002). "Q&A; Gleeful Flies?". The New York Times. Retrieved 4 December 2017.
  12. ^ Gorb SN (2005). "Uncovering Insect Stickiness: Structure and Properties of Hairy Attachment Devices". American Entomologist. 51 (1): 31–35. doi:10.1093/ae/51.1.31.
  13. ^ a b Dahlem GA (2009). "House Fly (Musca domestica)". In Resh VH, Carde RT (eds.). Encyclopedia of Insects (2nd ed.). Elsevier. pp. 469–470.
  14. ^ a b c d e f g h i Sanchez-Arroyo H, Capinera JL (20 April 2017). "House fly: Musca domestica". Featured Creatures. Retrieved 20 September 2017.
  15. ^ a b c West LS (1951). The Housefly. Its natural history, medical importance, and control (PDF). New York: Comstock Publishing Company.
  16. ^ Paterson HE (2009). "The Musca domestica complex in Sri Lanka". Journal of Entomology Series B, Taxonomy. 43 (2): 247–259. doi:10.1111/j.1365-3113.1975.tb00134.x.
  17. ^ Tumrasvin W, Shinonaga S (1977). "Report of Species Belonging to the Genus Musca Linné, Including the Taxonomic Key (Diptera: Muscidae)" (PDF). Bull. Tokyo Med. Dent. Univ. 24: 209–218.
  18. ^ Wiegmann BM, Yeates DK, Thorne JL, Kishino H (December 2003). "Time flies, a new molecular time-scale for brachyceran fly evolution without a clock". Systematic Biology. 52 (6): 745–756. doi:10.1093/sysbio/52.6.745. PMID 14668115.
  19. ^ Marquez JG, Krafsur ES (July 2002). "Gene flow among geographically diverse housefly populations (Musca domestica L.): a worldwide survey of mitochondrial diversity". The Journal of Heredity. 93 (4): 254–259. doi:10.1093/jhered/93.4.254. PMID 12407211.
  20. ^ Pont AC (1981). "The Linnaean species of the families Fanniidae, Anthomyiidae and Muscidae (Insecta: Diptera)". Biological Journal of the Linnean Society. 15 (2): 165–175. doi:10.1111/j.1095-8312.1981.tb00756.x.
  21. ^ Thom C, Gilley DC, Hooper J, Esch HE (September 2007). "The scent of the waggle dance". PLOS Biology. 5 (9): e228. doi:10.1371/journal.pbio.0050228. PMC 1994260. PMID 17713987.
  22. ^ "(Z)-9-Tricosene (103201) Fact Sheet" (PDF). United States Environmental Protection Agency. Retrieved 8 December 2017.
  23. ^ Murvosh CM, Fye RL, LaBrecque GC (1964). "Studies on the mating behavior of the house fly, Musca domestica L.". Ohio Journal of Science. 64 (4): 264–271. hdl:1811/5017.
  24. ^ Jiang Y, Lei C, Niu C, Fang Y, Xiao C, Zhang Z (October 2002). "Semiochemicals from ovaries of gravid females attract ovipositing female houseflies, Musca domestica". Journal of Insect Physiology. 48 (10): 945–950. doi:10.1016/s0022-1910(02)00162-2. PMID 12770041.
  25. ^ Larraín P, Salas C, Salas F (2008). "House fly (Musca domestica L.) (Diptera: Muscidae) development in different types of manure [Desarrollo de la Mosca Doméstica (Musca domestica L.) (Díptera: Muscidae) en Distintos Tipos de Estiércol]". Chilean Journal of Agricultural Research. 68 (2): 192–197. doi:10.4067/S0718-58392008000200009. ISSN 0718-5839.
  26. ^ Lam K, Thu K, Tsang M, Moore M, Gries G (September 2009). "Bacteria on housefly eggs, Musca domestica, suppress fungal growth in chicken manure through nutrient depletion or antifungal metabolites". Die Naturwissenschaften. 96 (9): 1127–1132. Bibcode:2009NW.....96.1127L. doi:10.1007/s00114-009-0574-1. PMID 19636523. S2CID 187752.
  27. ^ "Where do flies go in winter?". BBC Earth. 10 February 2015. Retrieved 23 September 2017.
  28. ^ "House flies". Cornell University: Department of Entomology. 2017. Retrieved 23 September 2017.
  29. ^ Ho TM (November 1990). "Phoretic association between Macrocheles muscaedomesticae (Acari: Macrochelidae) and flies inhabiting poultry manure in Peninsular Malaysia". Experimental & Applied Acarology. 10 (1): 61–68. doi:10.1007/BF01193974. PMID 2279455. S2CID 25307344.
  30. ^ Christophoryova J, Stloukal E, Stloukalova V (2011). "First record of phoresy of pseudoscorpion Lamprochernes chyszeri in Slovakia (Pseudoscorpiones: Chernetidae)" (PDF). Folia Faunistica Slovaca. 16 (3): 139–142.
  31. ^ Roy HE, Steinkraus DC, Eilenberg J, Hajek AE, Pell JK (2006). "Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts". Annual Review of Entomology. 51: 331–357. doi:10.1146/annurev.ento.51.110104.150941. PMID 16332215.
  32. ^ Hewitt CG (2011). The House-Fly: Musca Domestica Linn: Its Structure, Habits, Development, Relation to Disease and Control. Cambridge University Press. pp. 181–184. ISBN 978-0-521-23299-9.
  33. ^ Prompiboon P, Lietze VU, Denton JS, Geden CJ, Steenberg T, Boucias DG (February 2010). "Musca domestica salivary gland hypertrophy virus, a globally distributed insect virus that infects and sterilizes female houseflies". Applied and Environmental Microbiology. 76 (4): 994–998. Bibcode:2010ApEnM..76..994P. doi:10.1128/AEM.02424-09. PMC 2820963. PMID 20023109.
  34. ^ a b "Houseflies" (PDF). World Health Organization. Retrieved 25 September 2017.
  35. ^ Hussein M, Pillai VV, Goddard JM, Park HG, Kothapalli KS, Ross DA, et al. (2017). "Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure". PLOS ONE. 12 (2): e0171708. Bibcode:2017PLoSO..1271708H. doi:10.1371/journal.pone.0171708. PMC 5295707. PMID 28170420.
  36. ^ Ai H, Wang F, Xia Y, Chen X, Lei C (May 2012). "Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly, Musca domestica L". Food Chemistry. 132 (1): 493–498. doi:10.1016/j.foodchem.2011.11.033. PMID 26434321.
  37. ^ Connor S (2006). Fly. Reaktion Books. pp. 20, 27. ISBN 978-1861892942.
  38. ^ "Fly Pendants and Cylindrical and Spherical Beads, ca. 1539–1292 B.C.E. Gold, lapis lazuli, Length: 9 11/16 in. (24.6 cm). Brooklyn Museum, Charles Edwin Wilbour Fund, 08.480.198". Retrieved 8 December 2017.
  39. ^ Nazni WA, Luke H, Wan Rozita WM, Abdullah AG, Sa'diyah I, Azahari AH, et al. (June 2005). "Determination of the flight range and dispersal of the house fly, Musca domestica (L.) using mark release recapture technique". Tropical Biomedicine. 22 (1): 53–61. PMID 16880754.
  40. ^ a b Szalanski AL, Owens CB, McKay T, Steelman CD (September 2004). "Detection of Campylobacter and Escherichia coli O157:H7 from filth flies by polymerase chain reaction". Medical and Veterinary Entomology. 18 (3): 241–246. CiteSeerX 10.1.1.472.8821. doi:10.1111/j.0269-283X.2004.00502.x. PMID 15347391. S2CID 15788942.
  41. ^ Ostrolenk M, Welch H (May 1942). "The House Fly as a Vector of Food Poisoning Organisms in Food Producing Establishments". American Journal of Public Health and the Nation's Health. 32 (5): 487–494. doi:10.2105/ajph.32.5.487. PMC 1526899. PMID 18015612.
  42. ^ Levine OS, Levine MM (1991). "Houseflies (Musca domestica) as mechanical vectors of shigellosis". Reviews of Infectious Diseases. 13 (4): 688–696. doi:10.1093/clinids/13.4.688. PMID 1925289.
  43. ^ Förster M, Klimpel S, Sievert K (March 2009). "The house fly (Musca domestica) as a potential vector of metazoan parasites caught in a pig-pen in Germany". Veterinary Parasitology. 160 (1–2): 163–167. doi:10.1016/j.vetpar.2008.10.087. PMID 19081196.
  44. ^ a b c d Service M (2008). Medical Entomology for Students. Cambridge University Press. pp. 140–141. ISBN 978-0-521-70928-6.
  45. ^ Junqueira AC, Ratan A, Acerbi E, Drautz-Moses DI, Premkrishnan BN, Costea PI, et al. (November 2017). "The microbiomes of blowflies and houseflies as bacterial transmission reservoirs". Scientific Reports. 7 (1): 16324. Bibcode:2017NatSR...716324J. doi:10.1038/s41598-017-16353-x. PMC 5701178. PMID 29176730.
  46. ^ Minnett V, Poutanen M (2007). "Swatting flies for health: Children and tuberculosis in early twentieth-century Montreal" (PDF). Urban History Review. 36 (1): 32–44. doi:10.7202/1015818ar.
  47. ^ Cirillo VJ (2016). ""I am the baby killer!" House flies and the spread of polio". American Entomologist. 62 (2): 83. doi:10.1093/ae/tmw039.
  48. ^ "Eliminate the Four Pests". chineseposters.net. 1958. Retrieved 7 December 2017.
  49. ^ Lockwood JA (2012). "Insects as weapons of war, terror, and torture". Annual Review of Entomology. 57: 205–227. doi:10.1146/annurev-ento-120710-100618. PMID 21910635.
  50. ^ Miller BF, Teotia JS, Thatcher TO (March 1974). "Digestion of poultry manure by Musca domestica". British Poultry Science. 15 (2): 231–234. doi:10.1080/00071667408416100. PMID 4447887.
  51. ^ Čičková H, Pastor B, Kozánek M, Martínez-Sánchez A, Rojo S, Takáč P (2012). "Biodegradation of pig manure by the housefly, Musca domestica: a viable ecological strategy for pig manure management". PLOS ONE. 7 (3): e32798. Bibcode:2012PLoSO...732798C. doi:10.1371/journal.pone.0032798. PMC 3303781. PMID 22431982.
  52. ^ a b Zhu FX, Wang WP, Hong CL, Feng MG, Xue ZY, Chen XY, et al. (July 2012). "Rapid production of maggots as feed supplement and organic fertilizer by the two-stage composting of pig manure". Bioresource Technology. 116: 485–491. doi:10.1016/j.biortech.2012.04.008. PMID 22541952.
  53. ^ Hwangbo J, Hong EC, Jang A, Kang HK, Oh JS, Kim BW, Park BS (July 2009). "Utilization of house fly-maggots, a feed supplement in the production of broiler chickens". Journal of Environmental Biology. 30 (4): 609–614. PMID 20120505.
  54. ^ "Insect Control Devices, Design and Installation". FDA Food Code 2017. U.S. Food and Drug Administration. 2017. Retrieved 18 June 2019.
  55. ^ Georghiou GP, Hawley MK (1971). "Insecticide resistance resulting from sequential selection of houseflies in the field by organophosphorus compounds". Bulletin of the World Health Organization. 45 (1): 43–51. PMC 2427889. PMID 5316852.
  56. ^ Keiding J (1975). "Problems of housefly (Musca domestica) control due to multiresistance to insesticides". Journal of Hygiene, Epidemiology, Microbiology, and Immunology. 19 (3): 340–355. PMID 52667.
  57. ^ Walsh SB, Dolden TA, Moores GD, Kristensen M, Lewis T, Devonshire AL, Williamson MS (October 2001). "Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance". The Biochemical Journal. Portland Press Ltd. 359 (Pt 1): 175–181. doi:10.1042/bj3590175. PMC 1222133. PMID 11563981.
  58. ^ Gerry, Alec C. (15 October 2020). Owen, Jeb (ed.). "Review of Methods to Monitor House Fly (Musca domestica) Abundance and Activity". Journal of Economic Entomology. Entomological Society of America (OUP). 113 (6): 2571–2580. doi:10.1093/jee/toaa229. ISSN 0022-0493. PMID 33057651.
  59. ^ a b DeBach P, Rosen D (1991). Biological Control by Natural Enemies. CUP Archive. p. 348. ISBN 978-0-521-39191-7.
  60. ^ Capinera JL (2008). Encyclopedia of Entomology. Springer Science & Business Media. p. 1880. ISBN 978-1-4020-6242-1.
  61. ^ Agarwal S, Sohal RS (December 1994). "DNA oxidative damage and life expectancy in houseflies". Proceedings of the National Academy of Sciences of the United States of America. 91 (25): 12332–12335. Bibcode:1994PNAS...9112332A. doi:10.1073/pnas.91.25.12332. PMC 45431. PMID 7991627.
  62. ^ Holmes GE, Bernstein C, Bernstein H (September 1992). "Oxidative and other DNA damages as the basis of aging: a review". Mutation Research. 275 (3–6): 305–315. doi:10.1016/0921-8734(92)90034-M. PMID 1383772.
  63. ^ Bernstein H, Payne C, Bernstein C, Garewal H, Dvorak K (2008). "Cancer and Aging as Consequences of Unrepaired DNA Damage". In Kimura H, Suzuki A (eds.). New Research on DNA Damages. New York: Nova Science Publishers. pp. 1–47. ISBN 978-1-60456-581-2. Archived from the original on 25 October 2014. Retrieved 15 August 2013.
  64. ^ Sharma A, Heinze SD, Wu Y, Kohlbrenner T, Morilla I, Brunner C, et al. (May 2017). "Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22" (PDF). Science. 356 (6338): 642–645. Bibcode:2017Sci...356..642S. doi:10.1126/science.aam5498. PMID 28495751. S2CID 206656153.
  65. ^ Verhulst EC, van de Zande L, Beukeboom LW (August 2010). "Insect sex determination: it all evolves around transformer" (PDF). Current Opinion in Genetics & Development. 20 (4): 376–383. doi:10.1016/j.gde.2010.05.001. PMID 20570131.
  66. ^ Hediger M, Henggeler C, Meier N, Perez R, Saccone G, Bopp D (January 2010). "Molecular characterization of the key switch F provides a basis for understanding the rapid divergence of the sex-determining pathway in the housefly". Genetics. 184 (1): 155–170. doi:10.1534/genetics.109.109249. PMC 2815913. PMID 19841093.
  67. ^ Nayduch D, Burrus RG (2017). "Flourishing in Filth: House Fly–Microbe Interactions Across Life History". Annals of the Entomological Society of America. 110: 6–18. doi:10.1093/aesa/saw083.
  68. ^ Hanser K (26 June 2009). "Insect Power". Smithsonian National Air and Space Museum. Retrieved 7 December 2017.
  69. ^ Huber SA, Franz MO, Bülthoff HH (1999). "On robots and flies: Modeling the visual orientation behavior of flies" (PDF). Robotics and Autonomous Systems. 29 (4): 227–242. doi:10.1016/S0921-8890(99)00055-X.
  70. ^ "The etymology of Beelzebul has proceeded in several directions. The variant reading Beelzebub (Syriac translators and Jerome) reflects a long-standing tradition of equating Beelzebul with the Philistine deity of the city of Ekron mentioned in 2 Kgs 1:2, 3, 6, 16. Baalzebub (Heb ba˓al zĕbûb) seems to mean "lord of flies" (HALAT, 250, but cf. LXXB baal muian theon akkarōn, "Baal-Fly, god of Akkaron"; Ant 9:2, 1 theon muian).", Lewis, "Beelzebul", in Freedman, D.N. (1996). Vol. 1: The Anchor Yale Bible Dictionary (639). New York: Doubleday.
  71. ^ Parker R (2011). On Greek Religion. Cornell University Press. pp. 105–106. ISBN 978-0801477355.
  72. ^ Wyman LC (1983). "Navajo Ceremonial System" (PDF). Handbook of North American Indians. Humboldt State University. p. 539. Nearly every element in the universe may be thus personalized, and even the least of these such as tiny Chipmunk and those little insect helpers and mentors of deity and man in the myths, Big Fly (Dǫ'soh) and Ripener (Corn Beetle) Girl ('Anilt'ánii 'At'ééd) (Wyman and Bailey 1964:29–30, 51, 137–144), are as necessary for the harmonious balance of the universe as is the great Sun.
  73. ^ Wyman LC, Bailey FL (1964). Navaho Indian Ethnoentomology. Anthropology Series. University of New Mexico Press. ISBN 9780826301109. LCCN 64024356.
  74. ^ "Native American Fly Mythology". Native Languages of the Americas. Retrieved 8 December 2017.
  75. ^ Miner P (2011). "Blake's Swedenborgian Fly". Notes and Queries. 58 (4): 530. doi:10.1093/notesj/gjr180.
  76. ^ Priddy A (2009). Bloom's How to Write about Emily Dickinson. Infobase Publishing. p. 169. ISBN 978-1-4381-1240-4.
  77. ^ Golding W (2013). Lord of the Flies: Text, Criticism, Giossary and Notes. Al Manhal. p. 8. ISBN 9796500118451.
  78. ^ Henschel JR (2015). Toktok Talkie: Ancient Mariner to Zophosis Moralesi. Wordweaver Publishing House. p. 6. ISBN 978-99945-82-04-4. Ogden Nash was neither the first nor the last person to puzzle about the value of the fly, not only because flies are frequently considered a nuisance, but also because biodiversity in general is a puzzle. Nash's question can also be interpreted as going to the heart of conservation

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Housefly: Brief Summary

provided by wikipedia EN

The housefly (Musca domestica) is a fly of the suborder Cyclorrhapha. It is believed to have evolved in the Cenozoic Era, possibly in the Middle East, and has spread all over the world as a commensal of humans. It is the most common fly species found in houses. Adults are gray to black, with four dark, longitudinal lines on the thorax, slightly hairy bodies, and a single pair of membranous wings. They have red eyes, set farther apart in the slightly larger female.

The female housefly usually mates only once and stores the sperm for later use. She lays batches of about 100 eggs on decaying organic matter such as food waste, carrion, or feces. These soon hatch into legless white larvae, known as maggots. After two to five days of development, these metamorphose into reddish-brown pupae, about 8 millimetres (3⁄8 inch) long. Adult flies normally live for two to four weeks, but can hibernate during the winter. The adults feed on a variety of liquid or semi-liquid substances, as well as solid materials which have been softened by their saliva. They can carry pathogens on their bodies and in their feces, contaminate food, and contribute to the transfer of food-borne illnesses, while, in numbers, they can be physically annoying. For these reasons, they are considered pests.

Houseflies have been used in the laboratory in research into aging and sex determination. Houseflies appear in literature from Ancient Greek myth and Aesop's The Impertinent Insect onwards. Authors sometimes choose the housefly to speak of the brevity of life, as in William Blake's 1794 poem "The Fly", which deals with mortality subject to uncontrollable circumstances.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN