dcsimg

Associations

provided by BioImages, the virtual fieldguide, UK
Animal / parasitoid / endoparasitoid
solitary larva of Trichogramma is endoparasitoid of egg of Bruchidius villosus

Animal / parasitoid / endoparasitoid
solitary larva of Trichogramma is endoparasitoid of egg of Callosobruchus maculatus

license
cc-by-nc-sa-3.0
copyright
BioImages
project
BioImages

Brief Summary

provided by Catalog of Hymenoptera in America North of Mexico
The latest revision of this genus was published in 1960. Although it was a very great improvement over the 1918 revision, it left most workers unsatisfied. At present other revisional works are in progress, and new papers revising Trichogramma may be published at about the time this catalog appears. Several undescribed species from North America are at present known to be in manuscript. Fundamental studies are also currently being made on the genetics, hybridization, male genitalia, and biologies of the described species of Trichogramma. Consequently, the arrangement of the species in this catalog is provisional. ~Due to the fact that much of the older literature on biology cannot now be assigned to individual species as they are listed in this catalog, a large part of the biological literature on Trichogramma that was published before 1960 has been omitted. This literature is cited in full elsewhere; see Peck, 1963. Canad. Ent., Sup. 30: 51-73. ~Any species of this genus can be reared in the laboratory or insectary on the eggs of almost any convenient host, although Salt, 1938. Bul. Ent. Res. 29: 223-246 showed that a few insect eggs may be physically or chemically unsuitable. The true host specificity for Trichogramm in nature seems to be to appropriate insect eggs that are deposited in particular environmental niches rather than simply to the eggs of particular host species. Consequently, host species are not listed here for the species of Trichogramma, but their ecological requirements, as far as they are known, are indicated.
license
cc-by-nc
bibliographic citation
Catalog of Hymenoptera in America North of Mexico. 1979. Prepared cooperatively by specialists on the various groups of Hymenoptera under the direction of Karl V. Krombein and Paul D. Hurd, Jr., Smithsonian Institution, and David R. Smith and B. D. Burks, Systematic Entomology Laboratory, Insect Identification and Beneficial Insect Introduction Institute. Science and Education Administration, United States Department of Agriculture.

Trichogramma

provided by wikipedia EN

Trichogramma is a genus of minute polyphagous wasps that are endoparasitoids of insect eggs.[1] Trichogramma is one of around 80 genera from the family Trichogrammatidae, with over 200 species worldwide.[2][3][4]

Although several groups of egg parasitoids are commonly employed for biological control throughout the world, Trichogramma spp. have been the most extensively studied.[5] More than a thousand papers have been published on Trichogramma species, and they are the most used biological control agents in the world.[6]

Trichogramma spp. are also of interest in neuroscience research, having fewer than 10,000 neurons, approaching the theoretical lower limit of the size of an insect brain, yet exhibiting complex behaviors to sustain their lives. [7]

Sensation

Trichogramma have highly developed chemosensory organs due to their need to discriminate host from nonhost in a crowded environment.[3] Zhang et al. 1979 finds 13 sensilla types on the antennae, eyes, mouthparts, wing, leg, and external genitalia of T. dendrolimi. This is considered to generalize to the entire genus, and there may be more still undiscovered.[8]

Parasitism

To locate host eggs, adult females use chemical and visual signals, such as egg shape and colour.[3] After she finds a suitable egg, an experienced female attempts to determine if the egg has previously been parasitized, using her ovipositor and antennal drumming (tapping on the egg surface). Females also use antennal drumming to determine the size and quality of the target egg, which determines the number of eggs the female will insert.[9] A single female can parasitize up to 10 host eggs a day.

Identification

Trichogramma wasps are small and very uniform in structure, which causes difficulty in identifying the separate species.[10][11] As females are all relatively similar, taxonomists rely upon examination of males to tell the different species apart, using features of their antennae and genitalia.[12][13]

The first description of a Trichogramma species was in North America in 1871, by Charles V. Riley. He described the tiny wasps that emerged from eggs of the viceroy butterfly as Trichogramma minutum.[3] In taxonomy, original specimens are very important, as they are the basis of reference for subsequent descriptions of species. The original specimens, however, were lost. Riley also described a second species in 1879 as Trichogramma pretiosum, but these specimens were also lost. To correct these errors, entomologists returned to the areas where Riley originally found the species and obtained neotype specimens of T. minutum and T. pretiosum. These specimens are now preserved properly in the United States National Museum.[3] Currently, the number of Trichogramma species is over 200, but as of 1960, only some 40 species of Trichogramma had been described.[14]

Wolbachia in Trichogramma

Wolbachia is a widespread bacterial genus that infects insects' organs, most commonly the reproductive organs.[15] Wolbachia has been observed to alter the host's reproductive success upon infection.[15] Through a series of manipulations, Wolbachia-infected hosts transmit this intracellular bacterium to uninfected individuals.[15][16] These manipulations include male killing (increasing ratio of infected females that can reproduce), feminization (males become fertile females), parthenogenesis, and cytoplasmic incompatibility.[16] Horizontal transfer of parthenogenesis-inducing Wolbachia, which has been observed in Trichogramma wasps, causes infected females to asexually produce fertile females and nonfunctional males.[17] The effects of this include potential speciation of Trichogramma, if Wolbachia is maintained long enough for genetic divergence to occur and for a new species of asexual wasps to become reproductively isolated.[17]

Transmission of the bacterium through horizontal transfer has been observed within the same species and among different species of Trichogramma, including T. kaykai, T. deion, T. pretiosum, and T. atopovirilia; however, limitations to transmission exist.[16] In vitro successful horizontal transfer is uncommon within Trichogramma, which suggests that the density of Wolbachia must be relatively high inside of the hosts' ovaries.[16] Cytoplasmic incompatibility of the host and bacterium can also be the source of this unsuccessful transfer in-vitro.[16] These limitations in vitro suggest that in nature, horizontal transfer by parthenogenesis-inducing Wolbachia may be a difficult and rare phenomenon. However, when looking at the Wolbachia-host associations, the Trichogramma-Wolbachia form a monophyletic group based on several Wolbachia-specific genes, which may be explained by horizontal transfer of Wolbachia between different species.[16] Therefore, although interspecific horizontal transfer of Wolbachia is limited in vitro, it is likely to occur quite frequently in nature and is not well understood yet.

The effects of Wolbachia in Trichogramma have several evolutionary implications. Commonly, uninfected wasps are unable to breed with infected wasps.[18] Many generations of reproductive isolation of these different groups may result in speciation.[18] In addition, some hosts can evolve with a dependency on Wolbachia for core reproductive functions, such as oogenesis, so that eventually an infection is a requirement for successful reproduction.[18] Finally, Wolbachia can influence gender determination in its hosts so that more females are successfully born. This results in a reversal in sexual selection, where females must compete for male mates, which has evolutionary implications as it exposes different phenotypes to natural selection.[18]

Biological control

Trichogramma spp. have been used for control of lepidopteran pests for many years. They can be considered the Drosophila of the parasitoid world, as they have been used for inundative releases and much understanding today comes from experiments with these wasps.[19][20]

Entomologists in the early 1900s began to rear Trichogramma spp. for biological control. T. minutum is one of the most commonly found species in Europe and was first mass reared in 1926 on eggs of Sitotroga cerealella.[21] T. minutum has been investigated as a method of biological control of the Choristoneura fumiferana, a major pest of spruce and fir forests.[22]

Nine species of Trichogramma are produced commercially in insectaries around the world, with 30 countries releasing them. Trichogramma wasps are used for control on numerous crops and plants; these include cotton, sugarcane, vegetables, sugarbeets, orchards, and forests.[23] Some of the pests controlled include cotton bollworm (Helicoverpa armigera), codling moth (Cydia pomonella), lightbrown apple moth (Epiphyas postvittana), and European corn borer (Ostrinia nubilalis).

Trichogramma species vary in their host specificity. This can lead to nontarget hosts being parasitized. This, in turn, can cause problems by reducing the amount of parasitism of the target host, and depending on the rate of parasitism, nontarget effects could be significant on nontarget host populations. Research is being done on the use of Trichogramma wasps to control populations of spruce bud moth (Zeiraphera canadensis), which damages white spruce trees.[24]

Trichogramma began to be seriously used in the 1990s in China. Since then some applications have fallen out of use due to the rise of Bt crops because Bt is also toxic to the parasitoid. Future expansion of Bt in China is expected, and this threatens some uses of Trichogramma, however for some crops/pests it remains the better option and so is expected to continue instead of expanded Bt in those applications. Trichogramma will be especially necessary for resistance management if Bt maize/Bt corn is widely adopted.[8]

In 2021 the National Trust in England embarked on a trial of using Trichogramma evanescens, which parasitises clothes moth eggs, in conjunction with pheromones to control common clothes moths, which cause serious damage to carpets, furniture, clothing and other wool and silk objects in historic buildings.[25] The trial was abandoned in 2023; while the microwasps performed well at reducing moth populations in combination with pheromones, they were no better than pheromones alone.[26]

Species used

The most commonly used species for biological control are T. atopovirilia, T. brevicapillum, T. deion, T. exiguum, T. fuentesi, T. minutum, T. nubilale, T. platneri, T. pretiosum, and T. thalense.[3]

T. pretiosum

T. pretiosum is the most widely distributed species in North America.[3] It is a more generalized parasitoid, able to parasitise a range of different species. It has been the focus of many research studies and has been successfully reared on 18 genera of Lepidoptera. T. pretiosum was introduced into Australia in the 1970s as part of the Ord River Irrigation Area IPM scheme.[27][28]

T. carverae

Trichogramma carverae is mainly used for light brown apple moth and codling moth control, and is predominately used in orchards.[29] In Australia, T. carverae is used for biological control of light brown apple moth in vineyards. Though Australia has its own native Trichogramma species, not much work has been undertaken to use them commercially for biological control within Australia.[30]

Light brown apple moth is common throughout Australia and is polyphagous on more than 80 native and introduced species. The larvae cause the most damage, especially to grape berries, as their feeding provides sites for bunch rot to occur.[31] Losses in the crops can amount up to $2000/ha in one season. It is very predominant in areas such as the Yarra Valley. Insecticide use is not a choice method for most growers, who prefer a more natural means of controlling pests. As a result, Trichogramma wasps were considered a good candidate for biological control, even more so as the moth larvae are difficult to control with insecticide. Moreover, light brown apple moths are relatively vulnerable to egg parasitism, with their eggs being laid in masses of 20–50 on the upper surfaces of basal leaves in grapevines.

Species

List of Trichogramma species

References

  1. ^ Flanders, S; Quednau, W (1960). "Taxonomy of the genus Trichogramma (Hymenoptera, Chalcidoidea, Trichogrammatidae)". BioControl. 5 (4): 285–294. doi:10.1007/bf02372951. S2CID 34509414.
  2. ^ Consoli FL, Parra JRP, Zucchi RA (2010) 'Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma.' (Springer).
  3. ^ a b c d e f g Knutson A (2005) 'The Trichogramma Manual: A guide to the use of Trichogramma for Biological Control with Special Reference to Augmentative Releases for Control of Bollworm and Budworm in Cotton.' (Texas Agricultural Extension Service).
  4. ^ Sumer, F; Tuncbilek, AS; Oztemiz, S; Pintureau, B; Rugman-Jones, P; Stouthamer, R (2009). "A molecular key to the common species of Trichogramma of the Mediterranean region" (PDF). BioControl. 54 (5): 617–624. doi:10.1007/s10526-009-9219-8.
  5. ^ Upadhyay RK, Mukerji KG, Chamola BP (2001) 'Biocontrol potential and its Exploitation in Sustainable Agriculture: Insect Pests.' (Kluwer Academic/ Plenum Publishers).
  6. ^ Knutson A (2005) 'The Trichogramma Manual: A guide to the use of Trichogramma for Biological Control with Special Reference to Augmentative Releases for Control of bollworm and Budworm in Cotton.' (Texas Agricultural Extension Service).
  7. ^ van der Woude, Emma; Smid, Hans M. (September 2017). "Maximized complexity in miniaturized brains: morphology and distribution of octopaminergic, dopaminergic and serotonergic neurons in the parasitic wasp, Trichogramma evanescens". Cell and Tissue Research. 369 (3): 477–496. doi:10.1007/s00441-017-2642-8. PMC 5579201. PMID 28597098.
  8. ^ a b Zang, Lian-Sheng; Wang, Su; Zhang, Fan; Desneux, Nicolas (2021-01-07). "Biological Control with Trichogramma in China: History, Present Status, and Perspectives". Annual Review of Entomology. Annual Reviews. 66 (1): 463–484. doi:10.1146/annurev-ento-060120-091620. ISSN 0066-4170. PMID 32976724. S2CID 221938883.
  9. ^ Klomp, H; Teerink, B.J.; Wei, Chun Ma (1979). "Discrimination Between Parasitized and Unparasitized Hosts in the Egg Parasite Trichogramma embryophagum (Hym.: Trichogrammatidae): a Matter of Learning and Forgetting". Netherlands Journal of Zoology. 30 (2): 254–27. doi:10.1163/002829679X00412. ISSN 0028-2960.
  10. ^ Nagarkatti, S; Nagaraja, H (1977). "Biosystematics of Trichogramma and Trichogrammatoidea species". Annual Review of Entomology. 22: 157–176. doi:10.1146/annurev.en.22.010177.001105.
  11. ^ Thomson, LJ; Rundle, BJ; Carew, ME; Hoffmann, AA (2003). "Identification and characterization of Trichogramma species from south-eastern Australia using the internal transcribed spacer 2 (ITS-2) region of the ribosomal gene complex". Entomologia Experimentalis et Applicata. 106 (3): 235–240. doi:10.1046/j.1570-7458.2003.00029.x. S2CID 84163027.
  12. ^ Nagarkatti, S; Nagaraja, H (1971). "Redescriptions of some known species of Trichogramma (Hym., Trichogrammatidae), showing the importance of the male genitalia as a diagnostic character". Bulletin of Entomological Research. 61: 13–31. doi:10.1017/s0007485300057412.
  13. ^ Polaszek, A; Rugman-Jones, P; Stouthamer, R; Hernandez-Suarez, E; Cabello, T; Pino Pérez, M (2012). "Molecular and morphological diagnoses of five species of Trichogramma: biological control agents of Chrysodeixis chalcites (Lepidoptera: Noctuidae) and Tuta absoluta (Lepidoptera: Gelechiidae) in the Canary Islands". BioControl. 57: 21–35. doi:10.1007/s10526-011-9361-y. S2CID 18701180.
  14. ^ "Chalcids".
  15. ^ a b c Grenier, Simon; et al. (1998). "Successful horizontal transfer of Wolbachia symbionts between Trichogramma wasps". Proceedings of the Royal Society of London B: Biological Sciences. 265 (1404): 1441–1445. doi:10.1098/rspb.1998.0455. PMC 1689218.
  16. ^ a b c d e f Huigens, M. E.; et al. (2004). "Natural interspecific and intraspecific horizontal transfer of parthenogenesis–inducing wolbachia in trichogramma wasps". Proceedings of the Royal Society of London B: Biological Sciences. 271 (1538): 509–515. doi:10.1098/rspb.2003.2640. PMC 1691627. PMID 15129961.
  17. ^ a b Bourtzis, Kostas; O'Neill, Scott (1998). "Wolbachia Infections and Arthropod Reproduction". BioScience. 48 (4): 287–293. doi:10.2307/1313355. JSTOR 1313355.
  18. ^ a b c d Charlat, Sylvain; Hurst, Gregory D. D.; Merçot, Hervé (2003-04-01). "Evolutionary consequences of Wolbachia infections". Trends in Genetics. 19 (4): 217–223. doi:10.1016/S0168-9525(03)00024-6. ISSN 0168-9525. PMID 12683975.
  19. ^ Smith, Sandy M. (1996). "Biological Control with Trichogramma: Advances, Successes, and Potential of Their Use". Annual Review of Entomology. Annual Reviews. 41 (1): 375–406. doi:10.1146/annurev.en.41.010196.002111. ISSN 0066-4170. PMID 15012334. S2CID 33808315. S2CID 96421784.
  20. ^ BURGIO G., MAINI S., 1995.- Control of European corn borer in sweet corn by Trichogramma brassicae Bezd. (Hym., Trichogrammatidae).- Journal of Applied Entomology, 119 (1): 83-87.
  21. ^ Flanders, SE (1930). "Mass Production of Egg Parasites of the Genus Trichogramma". Hilgardia. 4 (16): 465–501. doi:10.3733/hilg.v04n16p465.
  22. ^ Smith, S.M.; Hubbes, M.; Carrow, J.R. 1986. Factors affecting inundative releases of Trichogramma minutum Ril. against the spruce budworm. J. Appl. Entomol. 101(1):29–39.
  23. ^ Hassan, SA (1993). "The mass rearing and utilization of Trichogramma to control lepidopterous pests: Achievements and outlook". Pesticide Science. 37 (4): 387–391. doi:10.1002/ps.2780370412.
  24. ^ Turgeon, Jean J. "Status of research on the development of management tactics and strategies for the spruce bud moth in white spruce plantations". The Forestry Chronicle. 68 (5): 614–622. doi:10.5558/tfc68614-5.
  25. ^ "Conservation at Blickling Hall, Norfolk". National Trust. 2022.
  26. ^ "'Surprising' clothes moths slump of nearly 40% across National Trust houses, possibly helped by record heat and drought, charity's annual insect pests report finds" (Press release). National Trust. 13 February 2023.
  27. ^ Davies, AP; Zalucki, MP (2008). "Collection of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) from tropical northern Australia: a survey of egg parasitoids for potential pest insect biological control in regions of proposed agricultural expansion". Australian Journal of Entomology. 47 (2): 160–167. doi:10.1111/j.1440-6055.2008.00644.x.
  28. ^ Davies, AP; Pufke, US; Zalucki, MP (2011). "Spatio-temporal variation in Helicoverpa egg parasitism by Trichogramma in a tropical Bt-transgenic cotton landscape". Agricultural and Forest Entomology. 13 (3): 247–258. doi:10.1111/j.1461-9563.2010.00512.x. S2CID 83477611.
  29. ^ Llewellyn R (2002) The good bug book: beneficial organisms commercially available in Australia and New Zealand for biological pest control.' (Integrated Pest Management Pty Ltd).
  30. ^ Glenn, DC; Hercus, MJ; Hoffmann, AA (1997). "Characterizing Trichogramma (Hymenoptera: Trichogrammatidae) species for biocontrol of light brown apple moth (Lepidoptera: Tortricidae) in grapevines in Australia". Annals of the Entomological Society of America. 90 (2): 128–137. doi:10.1093/aesa/90.2.128.
  31. ^ Glenn, DC; Hoffmann, AA (1997). "Developing a commercially viable system for biological control of light brown apple moth (Lepidoptera: Tortricidae) in grapes using endemic Trichogramma (Hymenoptera: Trichogrammatidae)". Journal of Economic Entomology. 90 (2): 370–382. doi:10.1093/jee/90.2.370.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Trichogramma: Brief Summary

provided by wikipedia EN

Trichogramma is a genus of minute polyphagous wasps that are endoparasitoids of insect eggs. Trichogramma is one of around 80 genera from the family Trichogrammatidae, with over 200 species worldwide.

Although several groups of egg parasitoids are commonly employed for biological control throughout the world, Trichogramma spp. have been the most extensively studied. More than a thousand papers have been published on Trichogramma species, and they are the most used biological control agents in the world.

Trichogramma spp. are also of interest in neuroscience research, having fewer than 10,000 neurons, approaching the theoretical lower limit of the size of an insect brain, yet exhibiting complex behaviors to sustain their lives.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Trichogramma ( Spanish; Castilian )

provided by wikipedia ES

Las avispillas del género Trichogramma son uno de los grupos más estudiados como controles biológicos de plagas de cultivos. Las avispas Trichogramma son unos pequeños insectos himenópteros, de 1 mm de longitud o aun menos; parasitan los huevos de varios insectos que pueden llegar a ser plaga de los cultivos. Son fáciles de transportar y liberar en campos que sufran ataques de plagas.[1][2][3]

Hay más de 220 especies de Trichogramma y muchas son tan parecidas que se necesita el examen de algún experto para diferenciarlas. Estas avispillas se usan actualmente en el control de, al menos 28 especies de insectos, entre ellos Helicoverpa zea, Cydia pomonella, y Ostrinia nubilalis. Las avispillas hembras ponen sus huevos dentro de los huevos de otros insectos y sus larvas consumen el embrión y otros contenidos del huevo parasitado.[4][5]

 src=
1. Coecophagus scutellaris. 2 Aphelinus basalis. 3 Thusanus ater 4 Trichogramma evanescens. Monographia Chalciditum

Lista de especies

(Incompleta)

Referencias

  1. Consoli FL, Parra JRP, Zucchi RA (2010) 'Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma.' (Springer).
  2. Knutson A (2005) 'The Trichogramma Manual: A guide to the use of Trichogramma for Biological Control with Special Reference to Augmentative Releases for Control of Bollworm and Budworm in Cotton.' (Texas Agricultural Extension Service).
  3. Sumer, F; Tuncbilek, AS; Oztemiz, S; Pintureau, B; Rugman-Jones, P; Stouthamer, R (2009). «A molecular key to the common species of Trichogramma of the Mediterranean region». BioControl 54 (5): 617-624. doi:10.1007/s10526-009-9219-8.
  4. Smith SM (1996) Biological control with Trichogramma: advances, successes, and potential of their use. In 'Annual Review of Entomology' pp. 375-406.
  5. BURGIO G., MAINI S., 1995.- Control of European corn borer in sweet corn by Trichogramma brassicae Bezd. (Hym., Trichogrammatidae).- Journal of Applied Entomology, 119 (1): 83-87.

 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Trichogramma: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

Las avispillas del género Trichogramma son uno de los grupos más estudiados como controles biológicos de plagas de cultivos. Las avispas Trichogramma son unos pequeños insectos himenópteros, de 1 mm de longitud o aun menos; parasitan los huevos de varios insectos que pueden llegar a ser plaga de los cultivos. Son fáciles de transportar y liberar en campos que sufran ataques de plagas.​​​

Hay más de 220 especies de Trichogramma y muchas son tan parecidas que se necesita el examen de algún experto para diferenciarlas. Estas avispillas se usan actualmente en el control de, al menos 28 especies de insectos, entre ellos Helicoverpa zea, Cydia pomonella, y Ostrinia nubilalis. Las avispillas hembras ponen sus huevos dentro de los huevos de otros insectos y sus larvas consumen el embrión y otros contenidos del huevo parasitado.​​

 src= 1. Coecophagus scutellaris. 2 Aphelinus basalis. 3 Thusanus ater 4 Trichogramma evanescens. Monographia Chalciditum
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Trichogramme ( French )

provided by wikipedia FR

Trichogramma

Les trichogrammes sont des micro-hyménoptères chalcidiens de la famille des Trichogrammatidae. On en connaît actuellement environ 200 espèces, la grande majorité du genre Trichogramma. Les autres appartiennent au genre Trichogrammatoidea. Leur taille est souvent inférieure au millimètre.

Les trichogrammes sont des parasitoïdes oophages. La larve des parasites de ce type, dite oophage, se développe à l'intérieur de l'œuf de l'insecte-hôte, dont l'embryon est tué à un moment plus ou moins précoce de la vie larvaire du parasitoïde. Avec les trichogrammes, l'hôte est tué très tôt et ce sont ses tissus désintégrés et son vitellus qui servent de nourriture à la larve du trichogramme et assurent son développement jusqu'à sa métamorphose, transformation en nymphe puis en imago (insecte parfait, adulte). Puis cet imago mène une vie libre, consacrée à l'accouplement et à la recherche, par la femelle, d'œufs-hôtes pour y déposer sa ponte ; l'adulte se nourrit de matières sucrées (miellat de pucerons) ou de substances protéiques (pollen des fleurs).

Les trichogrammes sont utilisés comme agents de lutte biologique contre plusieurs lépidoptères ravageurs, dont la pyrale du maïs qui à l'état larvaire ravage les tiges de cette poacée, et la pyrale du buis[1]. Les trichogrammes sont aussi utilisés contre le carpocapse de la pomme en vergers de pommiers. On les utilise aussi contre le Sphinx du palmier (Paysandisia archon), dans l'œuf duquel un trichogramme vient pondre.

Liste non exhaustive des espèces

Notes et références

  1. Patricia Le Crenn, SaveBuxus : une solution de biocontrôle contre la pyrale du buis, site de l'INRA, 6 octobre 2015, consulté le 7 mars 2017

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Trichogramme: Brief Summary ( French )

provided by wikipedia FR

Trichogramma

Les trichogrammes sont des micro-hyménoptères chalcidiens de la famille des Trichogrammatidae. On en connaît actuellement environ 200 espèces, la grande majorité du genre Trichogramma. Les autres appartiennent au genre Trichogrammatoidea. Leur taille est souvent inférieure au millimètre.

Les trichogrammes sont des parasitoïdes oophages. La larve des parasites de ce type, dite oophage, se développe à l'intérieur de l'œuf de l'insecte-hôte, dont l'embryon est tué à un moment plus ou moins précoce de la vie larvaire du parasitoïde. Avec les trichogrammes, l'hôte est tué très tôt et ce sont ses tissus désintégrés et son vitellus qui servent de nourriture à la larve du trichogramme et assurent son développement jusqu'à sa métamorphose, transformation en nymphe puis en imago (insecte parfait, adulte). Puis cet imago mène une vie libre, consacrée à l'accouplement et à la recherche, par la femelle, d'œufs-hôtes pour y déposer sa ponte ; l'adulte se nourrit de matières sucrées (miellat de pucerons) ou de substances protéiques (pollen des fleurs).

Les trichogrammes sont utilisés comme agents de lutte biologique contre plusieurs lépidoptères ravageurs, dont la pyrale du maïs qui à l'état larvaire ravage les tiges de cette poacée, et la pyrale du buis. Les trichogrammes sont aussi utilisés contre le carpocapse de la pomme en vergers de pommiers. On les utilise aussi contre le Sphinx du palmier (Paysandisia archon), dans l'œuf duquel un trichogramme vient pondre.

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Trichogramma ( Dutch; Flemish )

provided by wikipedia NL

Insecten
Een Trichogramma-wesp onderzoekt een ei alvorens haar eitjes erin te deponeren.

Trichogramma is een geslacht van vliesvleugeligen uit de familie Trichogrammatidae. De wetenschappelijke naam van dit geslacht is voor het eerst geldig gepubliceerd in 1833 door John Obadiah Westwood.

Trichogramma behoren tot de kleinste insecten ter wereld. Volwassen dieren zijn minder dan een halve millimeter lang en met het blote oog nauwelijks waarneembaar. Het zijn parasitoïde wespen, die hun eitjes leggen in de eitjes van motten. De larven ontwikkelen en verpoppen zich in die eitjes, die tijdens dit proces zwart verkleuren. De wespen knagen zich dan een weg naar buiten. Ze leven dan nog hooguit een paar weken en voeden zich met nectar van bloemen of suikerrijke honingdauw. Wijfjes die gepaard hebben kunnen zowel mannelijke als vrouwelijke nakomelingen voortbrengen. Wijfjes die niet gepaard hebben kunnen alleen mannetjes voortbrengen. Vooraleer een wijfje eitjes in een mottenei deponeert bepaalt ze of het al dan niet reeds geparasiteerd is en hoe groot het is. Ze doet dat door met haar tasters en poten het ei af te tasten. De grootte bepaalt het aantal eitjes dat het wijfje zal afzetten.

Biologische bestrijding

Trichogramma-wespen worden in verschillende delen van de wereld met succes ingezet voor de biologische bestrijding van plaaginsecten met bladvretende rupsen. Ze worden voor dat doel ook commercieel gekweekt en verhandeld.[1] Trichogramma zijn de meest bestudeerde soorten voor biologische bestrijding, omdat ze makkelijk te kweken en in laboratoriumomstandigheden te bestuderen zijn. Trichogramma pretiosum bijvoorbeeld is bruikbaar tegen Heliothis-plagen en de koolmot (Plutella xylostella); Trichogramma carverae onder meer tegen de fruitmot (Cydia pomonella) en de lichtbruine appelmot Epiphyas postvittana. In Brazilië wordt de geïmporteerde soort Trichogramma minutum gebruikt voor de bestrijding van de suikerrietboorder Diatraea saccharalis.[2]

Soorten

Het geslacht Trichogramma omvat de volgende soorten:

Bronnen, noten en/of referenties
  1. Voorbeeld: Bugs For Bugs in Australië
  2. H.N. Oliveira, J.C. Zanuncio, D. Pratissoli, M.C. Picanço. "Biological characteristics of Trichogramma maxacalii (Hymenoptera: Trichogrammatidae) on eggs of Anagasta kuehniella (Lepidoptera: Pyralidae)." Brazilian Journal of Biology (2003), vol. 63 nr. 4. DOI:10.1590/S1519-69842003000400011
license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Trichogramma: Brief Summary ( Dutch; Flemish )

provided by wikipedia NL
Een Trichogramma-wesp onderzoekt een ei alvorens haar eitjes erin te deponeren.

Trichogramma is een geslacht van vliesvleugeligen uit de familie Trichogrammatidae. De wetenschappelijke naam van dit geslacht is voor het eerst geldig gepubliceerd in 1833 door John Obadiah Westwood.

Trichogramma behoren tot de kleinste insecten ter wereld. Volwassen dieren zijn minder dan een halve millimeter lang en met het blote oog nauwelijks waarneembaar. Het zijn parasitoïde wespen, die hun eitjes leggen in de eitjes van motten. De larven ontwikkelen en verpoppen zich in die eitjes, die tijdens dit proces zwart verkleuren. De wespen knagen zich dan een weg naar buiten. Ze leven dan nog hooguit een paar weken en voeden zich met nectar van bloemen of suikerrijke honingdauw. Wijfjes die gepaard hebben kunnen zowel mannelijke als vrouwelijke nakomelingen voortbrengen. Wijfjes die niet gepaard hebben kunnen alleen mannetjes voortbrengen. Vooraleer een wijfje eitjes in een mottenei deponeert bepaalt ze of het al dan niet reeds geparasiteerd is en hoe groot het is. Ze doet dat door met haar tasters en poten het ei af te tasten. De grootte bepaalt het aantal eitjes dat het wijfje zal afzetten.

license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Kruszynek (owady) ( Polish )

provided by wikipedia POL
Trichogramma Westwood, 1833 Systematyka Domena eukarionty Królestwo zwierzęta Typ stawonogi Gromada owady Podgromada owady uskrzydlone Rząd błonkoskrzydłe Rodzina kruszynkowate Rodzaj kruszynek
 src=
Ten artykuł od 2009-10 wymaga zweryfikowania podanych informacji.
Należy podać wiarygodne źródła, najlepiej w formie przypisów bibliograficznych.
Część lub nawet wszystkie informacje w artykule mogą być nieprawdziwe. Jako pozbawione źródeł mogą zostać zakwestionowane i usunięte.
Dokładniejsze informacje o tym, co należy poprawić, być może znajdują się w dyskusji tego artykułu.
Po wyeliminowaniu niedoskonałości należy usunąć szablon {{Dopracować}} z tego artykułu.

Kruszynek (Trichogramma) – rodzaj owadów błonkoskrzydłych z rodziny kruszynkowatych (Trichogrammatidae). Opisano ponad 200 gatunków kruszynków.

Niewielkie owady o długości nie przekraczającej 1 mm (zwykle 0,3–0,5 mm). Larwy pasożytują na jajach owadów roślinożernych (entomofagi), przede wszystkim owocówek jabłkóweczek. Larwy żywią się jajem żywiciela. Kruszynki mają ogromne znaczenie w gospodarce człowieka. Wykorzystywane są do biologicznej kontroli populacji wielu szkodników upraw.

license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Kruszynek (owady): Brief Summary ( Polish )

provided by wikipedia POL

Kruszynek (Trichogramma) – rodzaj owadów błonkoskrzydłych z rodziny kruszynkowatych (Trichogrammatidae). Opisano ponad 200 gatunków kruszynków.

Niewielkie owady o długości nie przekraczającej 1 mm (zwykle 0,3–0,5 mm). Larwy pasożytują na jajach owadów roślinożernych (entomofagi), przede wszystkim owocówek jabłkóweczek. Larwy żywią się jajem żywiciela. Kruszynki mają ogromne znaczenie w gospodarce człowieka. Wykorzystywane są do biologicznej kontroli populacji wielu szkodników upraw.

license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Trichogramma ( Portuguese )

provided by wikipedia PT

Trichogramma é um género de pequenas vespas da família Trichogrammatidae, frequentemente utilizadas no controlo biológico de pragas de algumas culturas.

Lista de espécies

(Incompleta)

 title=
license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Trichogramma: Brief Summary ( Portuguese )

provided by wikipedia PT

Trichogramma é um género de pequenas vespas da família Trichogrammatidae, frequentemente utilizadas no controlo biológico de pragas de algumas culturas.

license
cc-by-sa-3.0
copyright
Autores e editores de Wikipedia
original
visit source
partner site
wikipedia PT

Трихограммы ( Russian )

provided by wikipedia русскую Википедию
Самка трихограммы взбирается на самку капустницы, чтобы доехать на ней до места откладки яиц и отложить в них свои яйца

Хозяйственное значение

Трихограммы являются энтомофагами. Ряд видов из рода трихограмм (в первую очередь трихограмма обыкновенная — Trichogramma evanescens West., бессамцовая — Trichogramma embryophagum Htg., эупроктис — Trichogramma euproctidis Gir.) размножают в биолабораториях на яйцах зерновой моли и используют в борьбе с чешуекрылыми вредителями сельскохозяйственных культур. Трихограммы откладывает яйца в свежеотложенные яйца вредителей. Взрослых трихограмм выпускают приблизительно в 50 точках на одном гектаре посадок. При борьбе с капустной и озимой совками выпускают до 50 тысяч особей трихограммы на один гектар в два срока в период откладки насекомыми — вредителями яиц. Трихограмму применяют также при биологической борьбе с луговым и кукурузным мотыльками, яблонной плодожоркой, капустной белянкой.

Хорошо разработаны методы применения трихограммы для защиты от вредителей капустных, а также томатов, сахарной кукурузы[1].

В целом трихограммы могут использоваться для борьбы с несколькими десятками (более 70) видов насекомых — вредителей.

Примечания

license
cc-by-sa-3.0
copyright
Авторы и редакторы Википедии

Трихограммы: Brief Summary ( Russian )

provided by wikipedia русскую Википедию
Файл:Reward-Value-Determines-Memory-Consolidation-in-Parasitic-Wasps-pone.0039615.s003.ogvВоспроизвести медиафайл Самка трихограммы взбирается на самку капустницы, чтобы доехать на ней до места откладки яиц и отложить в них свои яйца
license
cc-by-sa-3.0
copyright
Авторы и редакторы Википедии

赤眼蜂屬 ( Chinese )

provided by wikipedia 中文维基百科
Antistub.svg
本条目需要擴充。(2018年6月19日)
请協助改善这篇條目,更進一步的信息可能會在討論頁扩充请求中找到。请在擴充條目後將此模板移除。

赤眼蜂屬(學名: Trichogramma)是膜翅目細腰亞目寄生蜂下目之下的小蜂总科赤眼蜂科的成員之一,其物種皆為多食性英语polyphagous的微小拟寄生物,寄生於其牠昆蟲的蟲卵中[1]。赤眼蜂屬是赤眼蜂科約80個屬的其中一個,在全世界包括超過200個物種[2][3][4]。成蟲大多小於1毫米,會產卵於宿主卵内,幼蟲取食卵黄、化蛹並引發宿主死亡。成蟲羽化後咬破寄主卵殼而出。

儘管現時在全世界有多種用於生物防治的物種,本屬物種仍然是研究得最詳盡的一類[5],有超過一千份相關的文獻與本屬物種相關,也是目前世上於生物防治中 最常用的物種[6]Trichogramma spp. are unique in approaching the size limit of how small an insect can be, which would be determined by how few neurons they can fit in their central nervous systems, yet exhibiting a complex behavior to sustain their lives. These wasps have less than 10,000 neurons, which is 1/100th that of the next smallest insect.[7]

寄生性

To locate host eggs, adult females use chemical and visual signals, such as egg shape and colour.[6] After she finds a suitable egg, an experienced female attempts to determine if the egg has previously been parasitized, using her ovipositor and antennal drumming (tapping on the egg surface). Females also use antennal drumming to determine the size and quality of the target egg, which determines the number of eggs the female will insert.[8] A single female can parasitize up to 10 host eggs a day.

辨識

本屬物種體型細小,構造上亦單一,使物種間的分辨頗困難[9][10][11]。As females are all relatively similar, taxonomists rely upon examination of males to tell the different species apart, using features of their antennae and genitalia.[12][13]

The first description of a Trichogramma species was in North America in 1871, by Charles V. Riley. He described the tiny wasps that emerged from eggs of the viceroy butterfly as Trichogramma minutum.[3] In 生物分类学, original specimens are very important, as they are the basis of reference for subsequent descriptions of species. The original specimens, however, were lost. Riley also described a second species in 1879 as Trichogramma pretiosum, but these specimens were also lost. To correct these errors, entomologists returned to the areas where Riley originally found the species and obtained Lua错误:bad argument #1 to 'gsub' (string expected, got nil)。 specimens of T. minutum and T. pretiosum. These specimens are now preserved properly in the 史密森尼学会.[3] Currently, the number of Trichogramma species is over 200, but as of 1960, only some 40 species of Trichogramma had been described.[14]

赤眼蜂屬物種體內的沃尔巴克氏体

赤眼蜂屬物種體內有沃尔巴克氏体Wolbachia),是一種分佈廣泛的細菌,專門感染昆蟲的內臟,特別是生殖系統的器官[15]。這些沃尔巴克氏体在感染了昆蟲後,會改變其宿主交配時的成功率[15]。 Through a series of manipulations, Wolbachia-infected hosts transmit this intracellular bacterium to uninfected individuals.[15][16] These manipulations include male killing (increasing ratio of infected females that can reproduce), feminization (males become fertile females), 单性生殖, and Lua错误:bad argument #1 to 'gsub' (string expected, got nil)。.[16] Horizontal transfer of parthenogenesis-inducing Wolbachia, which has been observed in Trichogramma wasps, causes infected females to asexually produce fertile females and nonfunctional males.[17] The effects of this include potential speciation of Trichogramma, if Wolbachia is maintained long enough for genetic divergence to occur and for a new species of asexual wasps to become reproductively isolated.[17]

Transmission of the bacterium through horizontal transfer has been observed within the same species and among different species of Trichogramma, including T. kaykai, T. deion, T. pretiosum, and T. atopovirilia; however, limitations to transmission exist.[16] In vitro successful horizontal transfer is uncommon within Trichogramma, which suggests that the density of Wolbachia must be relatively high inside of the hosts' ovaries.[16] Cytoplasmic incompatibility of the host and bacterium can also be the source of this unsuccessful transfer in-vitro.[16] These limitations in vitro suggest that in nature, horizontal transfer by parthenogenesis-inducing Wolbachia may be a difficult and rare phenomenon. However, when looking at the Wolbachia-host associations, the Trichogramma-Wolbachia form a monophyletic group based on several Wolbachia-specific genes, which may be explained by horizontal transfer of Wolbachia between different species.[16] Therefore, although interspecific horizontal transfer of Wolbachia is limited in vitro, it is likely to occur quite frequently in nature and is not well understood yet.

The effects of Wolbachia in Trichogramma have several evolutionary implications. Commonly, uninfected wasps are unable to breed with infected wasps.[18] Many generations of reproductive isolation of these different groups may result in speciation.[18] In addition, some hosts can evolve with a dependency on Wolbachia for core reproductive functions, such as 卵子生成, so that eventually an infection is a requirement for successful reproduction.[18] Finally, Wolbachia can influence gender determination in its hosts so that more females are successfully born. This results in a reversal in 性選擇, where females must compete for male mates, which has evolutionary implications as it exposes different phenotypes to natural selection.[18]

Biological control

Trichogramma spp. have been used for control of lepidopteran pests for many years. They can be considered the Drosophila of the parasitoid world, as they have been used for inundative releases and much understanding today comes from experiments with these wasps.[19][20]

Entomologists in the early 1900s began to rear Trichogramma spp. for biological control. T. minutum is one of the most commonly found species in Europe and was first mass reared in 1926 on eggs of Lua错误:bad argument #1 to 'gsub' (string expected, got nil)。.[21] T. minutum has been investigated as a method of biological control of the Choristoneura fumiferana, a major pest of spruce and fir forests.[22]

Nine species of Trichogramma are produced commercially in insectaries around the world, with 30 countries releasing them. Trichogramma wasps are used for control on numerous crops and plants; these include cotton, sugarcane, vegetables, sugarbeets, orchards, and forests.[23] Some of the pests controlled include cotton bollworm (Lua错误:bad argument #1 to 'gsub' (string expected, got nil)。), codling moth (Lua错误:bad argument #1 to 'gsub' (string expected, got nil)。), lightbrown apple moth (Lua错误:bad argument #1 to 'gsub' (string expected, got nil)。), and European corn borer (Lua错误:bad argument #1 to 'gsub' (string expected, got nil)。).

Trichogramma species vary in their host specificity. This can lead to nontarget hosts being parasitized. This, in turn, can cause problems by reducing the amount of parasitism of the target host, and depending on the rate of parasitism, nontarget effects could be significant on nontarget host populations. Research is being done on the use of Trichogramma wasps to control populations of spruce bud moth (Lua错误:bad argument #1 to 'gsub' (string expected, got nil)。), which damages white spruce trees.[24]

Species used

The most commonly used species for biological control are T. atopovirilia, T. brevicapillum, T. deion, T. exiguum, T. fuentesi, T. minutum, T. nubilale, T. platneri, T. pretiosum, and T. thalense.[3]

T. pretiosum

T. pretiosum is the most widely distributed species in North America.[3] It is a more generalized parasitoid, able to parasitise a range of different species. It has been the focus of many research studies and has been successfully reared on 18 genera of Lepidoptera. T. pretiosum was introduced into Australia in the 1970s as part of the Ord River Irrigation Area IPM scheme.[25][26]

T. carverae

Trichogramma carverae is mainly used for light brown apple moth and codling moth control, and is predominately used in orchards.[27] In Australia, T. carverae is used for biological control of light brown apple moth in vineyards. Though Australia has its own native Trichogramma species, not much work has been undertaken to use them commercially for biological control within Australia.[28]

Light brown apple moth is common throughout Australia and is polyphagous on more than 80 native and introduced species. The larvae cause the most damage, especially to grape berries, as their feeding provides sites for bunch rot to occur.[29] Losses in the crops can amount up to $2000/ha in one season. It is very predominant in areas such as the Lua错误:bad argument #1 to 'gsub' (string expected, got nil)。. Insecticide use is not a choice method for most growers, who prefer a more natural means of controlling pests. As a result, Trichogramma wasps were considered a good candidate for biological control, even more so as the moth larvae are difficult to control with insecticide. Moreover, light brown apple moths are relatively vulnerable to egg parasitism, with their eggs being laid in masses of 20-50 on the upper surfaces of basal leaves in grapevines.

部分物種

以下譯名參照龐飛雄陳泰魯 (1974)使用的名稱[9]:441

參考文獻

  1. ^ Flanders, S; Quednau, W. Taxonomy of the genus Trichogramma (Hymenoptera, Chalcidoidea, Trichogrammatidae). BioControl. 1960, 5: 285–294. doi:10.1007/bf02372951.
  2. ^ Consoli FL, Parra JRP, Zucchi RA (2010) 'Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma.' (Springer).
  3. ^ 3.0 3.1 3.2 3.3 3.4 Knutson A (2005) 'The Trichogramma Manual: A guide to the use of Trichogramma for Biological Control with Special Reference to Augmentative Releases for Control of Bollworm and Budworm in Cotton.' (Texas Agricultural Extension Service).
  4. ^ Sumer, F; Tuncbilek, AS; Oztemiz, S; Pintureau, B; Rugman-Jones, P; Stouthamer, R. A molecular key to the common species of Trichogramma of the Mediterranean region. BioControl. 2009, 54: 617–624. doi:10.1007/s10526-009-9219-8.
  5. ^ Upadhyay RK, Mukerji KG, Chamola BP (2001) 'Biocontrol potential and its Exploitation in Sustainable Agriculture: Insect Pests.' (Kluwer Academic/ Plenum Publishers).
  6. ^ 6.0 6.1 Knutson A (2005) 'The Trichogramma Manual: A guide to the use of Trichogramma for Biological Control with Special Reference to Augmentative Releases for Control of bollworm and Budworm in Cotton.' (Texas Agricultural Extension Service).
  7. ^ Macadamia Nut Plantation, Trichogramma
  8. ^ Klomp, H; Teerink, B.J.; Wei, Chun Ma. Discrimination Between Parasitized and Unparasitized Hosts in the Egg Parasite Trichogramma embryophagum (Hym.=Trichogrammatidae)=a Matter of Learning and Forgetting. Netherlands Journal of Zoology (Koninklijke Brill NV). 1979, 30 (2): 254–27 [May 22, 2014]. ISSN 0028-2960. doi:10.1163/002829679X00412.
  9. ^ 9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19 9.20 9.21 龐飛雄; 陳泰魯. 中国的赤眼蜂属Trichogramma記述. 昆蟲學報. 1974-11, 17 (4): 441–454 [2018-06-18] (中文(简体)‎). 引文格式1维护:日期与年 (link)
  10. ^ Nagarkatti, S; Nagaraja, H. Biosystematics of Trichogramma and Trichogrammatoidea species. Annual Review of Entomology. 1977, 22: 157–176. doi:10.1146/annurev.en.22.010177.001105.
  11. ^ Thomson, LJ; Rundle, BJ; Carew, ME; Hoffmann, AA. Identification and characterization of Trichogramma species from south-eastern Australia using the internal transcribed spacer 2 (ITS-2) region of the ribosomal gene complex. Entomologia Experimentalis et Applicata. 2003, 106: 235–240. doi:10.1046/j.1570-7458.2003.00029.x.
  12. ^ Nagarkatti, S; Nagaraja, H. Redescriptions of some known species of Trichogramma (Hym., Trichogrammatidae), showing the importance of the male genitalia as a diagnostic character. Bulletin of Entomological Research. 1971, 61: 13–31. doi:10.1017/s0007485300057412.
  13. ^ Polaszek, A; Rugman-Jones, P; Stouthamer, R; Hernandez-Suarez, E; Cabello, T; Pino Pérez, M. Molecular and morphological diagnoses of five species of Trichogramma: biological control agents of Chrysodeixis chalcites (Lepidoptera: Noctuidae) and Tuta absoluta (Lepidoptera: Gelechiidae) in the Canary Islands. BioControl. 2012, 57: 21–35. doi:10.1007/s10526-011-9361-y.
  14. ^ [1]
  15. ^ 15.0 15.1 15.2 Grenier, Simon; 等. Successful horizontal transfer of Wolbachia symbionts between Trichogramma wasps. Proceedings of the Royal Society of London B: Biological Sciences. 1998, 265: 1441–1445. PMC 1689218. doi:10.1098/rspb.1998.0455.
  16. ^ 16.0 16.1 16.2 16.3 16.4 16.5 Huigens, M. E.; 等. Natural interspecific and intraspecific horizontal transfer of parthenogenesis–inducing wolbachia in trichogramma wasps. Proceedings of the Royal Society of London B: Biological Sciences. 2004, 271: 509–515. PMC 1691627. doi:10.1098/rspb.2003.2640.
  17. ^ 17.0 17.1 Bourtzis, Kostas; O'Neill, Scott. Wolbachia Infections and Arthropod Reproduction. BioScience. 1998, 48: 287–293. doi:10.2307/1313355.
  18. ^ 18.0 18.1 18.2 18.3 Charlat, Sylvain; Hurst, Gregory D. D.; Merçot, Hervé. Evolutionary consequences of Wolbachia infections. Trends in Genetics. 2003-04-01, 19 (4): 217–223. ISSN 0168-9525. PMID 12683975. doi:10.1016/S0168-9525(03)00024-6.
  19. ^ Smith SM (1996) Biological control with Trichogramma: advances, successes, and potential of their use. In 'Annual Review of Entomology' pp. 375-406.
  20. ^ BURGIO G., MAINI S., 1995.- Control of European corn borer in sweet corn by Trichogramma brassicae Bezd. (Hym., Trichogrammatidae).- Journal of Applied Entomology, 119 (1): 83-87.
  21. ^ Flanders, SE. Mass Production of Egg Parasites of the Genus Trichogramma. Hilgardia. 1930, 4: 465–501. doi:10.3733/hilg.v04n16p465.
  22. ^ Smith, S.M.; Hubbes, M.; Carrow, J.R. 1986. Factors affecting inundative releases of Trichogramma minutum Ril. against the spruce budworm. J. Appl. Entomol. 101(1):29–39.
  23. ^ Hassan, SA. The mass rearing and utilization of Trichogramma to control lepidopterous pests: Achievements and outlook. Pesticide Science. 1993, 37: 387–391. doi:10.1002/ps.2780370412.
  24. ^ Turgeon, Jean J. "Status of research on the development of management tactics and strategies for the spruce bud moth in white spruce plantations". The Forestry Chronicle. 68 (5): 614–622. DOI:10.5558/tfc68614-5.
  25. ^ Davies, AP; Zalucki, MP. Collection of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) from tropical northern Australia: a survey of egg parasitoids for potential pest insect biological control in regions of proposed agricultural expansion. Australian Journal of Entomology. 2008, 47: 160–167. doi:10.1111/j.1440-6055.2008.00644.x.
  26. ^ Davies, AP; Pufke, US; Zalucki, MP. Spatio-temporal variation in Helicoverpa egg parasitism by Trichogramma in a tropical Bt-transgenic cotton landscape. Agricultural and Forest Entomology. 2011, 13: 247–258. doi:10.1111/j.1461-9563.2010.00512.x.
  27. ^ Llewellyn R (2002) The good bug book: beneficial organisms commercially available in Australia and New Zealand for biological pest control.' (Integrated Pest Management Pty Ltd).
  28. ^ Glenn, DC; Hercus, MJ; Hoffmann, AA. Characterizing Trichogramma (Hymenoptera: Trichogrammatidae) species for biocontrol of light brown apple moth (Lepidoptera: Tortricidae) in grapevines in Australia. Annals of the Entomological Society of America. 1997, 90: 128–137.
  29. ^ Glenn, DC; Hoffmann, AA. Developing a commercially viable system for biological control of light brown apple moth (Lepidoptera: Tortricidae) in grapes using endemic Trichogramma (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology. 1997, 90: 370–382.
  30. ^ 引用错误:没有为名为Pang & Chen, 1974的参考文献提供内容
  31. ^ Description of three new Trichogramma (Hymenoptera, Trichogrammatidae) from New Zealand and their relationship to new world species (英语).
引用错误:在标签中name属性为“Quednau 1960”的参考文献没有在文中使用
license
cc-by-sa-3.0
copyright
维基百科作者和编辑

赤眼蜂屬: Brief Summary ( Chinese )

provided by wikipedia 中文维基百科

赤眼蜂屬(學名: Trichogramma)是膜翅目細腰亞目寄生蜂下目之下的小蜂总科赤眼蜂科的成員之一,其物種皆為多食性(英语:polyphagous)的微小拟寄生物,寄生於其牠昆蟲的蟲卵中。赤眼蜂屬是赤眼蜂科約80個屬的其中一個,在全世界包括超過200個物種。成蟲大多小於1毫米,會產卵於宿主卵内,幼蟲取食卵黄、化蛹並引發宿主死亡。成蟲羽化後咬破寄主卵殼而出。

儘管現時在全世界有多種用於生物防治的物種,本屬物種仍然是研究得最詳盡的一類,有超過一千份相關的文獻與本屬物種相關,也是目前世上於生物防治中 最常用的物種。 Trichogramma spp. are unique in approaching the size limit of how small an insect can be, which would be determined by how few neurons they can fit in their central nervous systems, yet exhibiting a complex behavior to sustain their lives. These wasps have less than 10,000 neurons, which is 1/100th that of the next smallest insect.

license
cc-by-sa-3.0
copyright
维基百科作者和编辑