dcsimg

Associations

provided by BioImages, the virtual fieldguide, UK
In Great Britain and/or Ireland:
Foodplant / parasite
Blumeria graminis parasitises live Agrostis stolonifera

Foodplant / parasite
Blumeria graminis parasitises live Agrostis capillaris

Foodplant / parasite
Blumeria graminis parasitises live Alopecurus geniculatus

Foodplant / parasite
Blumeria graminis parasitises live Alopecurus myosuroides

Foodplant / parasite
Blumeria graminis parasitises live Alopecurus pratensis

Foodplant / parasite
Blumeria graminis parasitises live Ammophila arenaria

Foodplant / parasite
Blumeria graminis parasitises live Anthoxanthum odoratum

Foodplant / parasite
Blumeria graminis parasitises live Apera spica-venti

Foodplant / parasite
Blumeria graminis parasitises live Arrhenatherum elatius

Foodplant / parasite
Blumeria graminis parasitises live Avena fatua

Foodplant / parasite
Blumeria graminis parasitises live Avena sterilis ssp ludoviciana

Foodplant / parasite
Blumeria graminis parasitises live Avena sativa

Foodplant / parasite
Blumeria graminis parasitises live Avena strigosa

Foodplant / parasite
Blumeria graminis parasitises live Brachypodium sylvaticum

Foodplant / parasite
Blumeria graminis parasitises live Briza media

Foodplant / parasite
Blumeria graminis parasitises live Bromus adoensis

Foodplant / parasite
Blumeria graminis parasitises live Bromus arunduensis

Foodplant / parasite
Blumeria graminis parasitises live Bromus brizaeformis

Foodplant / parasite
Blumeria graminis parasitises live Bromus crinitus

Foodplant / parasite
Blumeria graminis parasitises live Bromus condensatus

Foodplant / parasite
Blumeria graminis parasitises live Bromus commutatus

Foodplant / parasite
Blumeria graminis parasitises live Bromopsis erecta

Foodplant / parasite
Blumeria graminis parasitises live Bromus fibrosus

Foodplant / parasite
Blumeria graminis parasitises live Bromus hordeaceus

Foodplant / parasite
Blumeria graminis parasitises live Bromus interruptus

Foodplant / parasite
Blumeria graminis parasitises live Bromus japonicus

Foodplant / parasite
Blumeria graminis parasitises live Bromus kalmii

Foodplant / parasite
Blumeria graminis parasitises live Bromus krausii

Foodplant / parasite
Blumeria graminis parasitises live Anisantha madritensis

Foodplant / parasite
Blumeria graminis parasitises live Ceratochloa marginata

Foodplant / parasite
Blumeria graminis parasitises live Bromus pungens

Foodplant / parasite
Blumeria graminis parasitises live Cynosurus cristatus

Foodplant / parasite
Blumeria graminis parasitises live Dactylis glomerata

Foodplant / parasite
Blumeria graminis parasitises live Danthonia decumbens

Foodplant / parasite
Blumeria graminis parasitises live Deschampsia cespitosa

Foodplant / parasite
Blumeria graminis parasitises live Digitaria sanguinalis

Foodplant / parasite
Blumeria graminis parasitises live Elymus caninus

Foodplant / parasite
Blumeria graminis parasitises live Elytrigia repens

Foodplant / parasite
Blumeria graminis parasitises live Festuca arundinacea

Foodplant / parasite
Blumeria graminis parasitises live Festuca gigantea

Foodplant / parasite
Blumeria graminis parasitises live Festuca heterophylla

Foodplant / parasite
Blumeria graminis parasitises live Festuca ovina agg.

Foodplant / parasite
cleistothecium of Blumeria graminis parasitises live sheath of Festuca pratensis
Remarks: season: 7-10

Foodplant / parasite
Blumeria graminis parasitises live Festuca rubra agg.

Foodplant / parasite
Blumeria graminis parasitises live Glyceria maxima

Foodplant / parasite
Blumeria graminis parasitises live Holcus lanatus

Foodplant / parasite
Blumeria graminis parasitises live Holcus mollis

Foodplant / parasite
Blumeria graminis parasitises live Hordelymus europaeus

Foodplant / parasite
Blumeria graminis parasitises live Hordeum distichon sens.lat.

Foodplant / parasite
Blumeria graminis parasitises live Hordeum jubatum

Foodplant / parasite
Blumeria graminis parasitises live Hordeum murinum

Foodplant / parasite
Blumeria graminis parasitises live Hordeum secalinum

Foodplant / parasite
Blumeria graminis parasitises live Hordeum vulgare sens. lat.

Foodplant / parasite
Blumeria graminis parasitises live Koeleria macrantha sens. lat.

Foodplant / parasite
Blumeria graminis parasitises live Leymus arenarius

Foodplant / parasite
Blumeria graminis parasitises live Lolium multiflorum

Foodplant / parasite
Blumeria graminis parasitises live Lolium perenne

Foodplant / parasite
Blumeria graminis parasitises live Lolium temulentum

Foodplant / parasite
Blumeria graminis parasitises live Milium effusum

Foodplant / parasite
Blumeria graminis parasitises live Phalaris arundinacea

Foodplant / parasite
Blumeria graminis parasitises live Phleum pratense sens.lat.

Foodplant / parasite
Blumeria graminis parasitises live Poa alpina

Foodplant / parasite
Blumeria graminis parasitises live Poa annua

Foodplant / parasite
Blumeria graminis parasitises live Poa bulbosa

Foodplant / parasite
Blumeria graminis parasitises live Poa compressa

Foodplant / parasite
Blumeria graminis parasitises live Poa glauca

Foodplant / parasite
Blumeria graminis parasitises live Poa nemoralis

Foodplant / parasite
Blumeria graminis parasitises live Poa palustris

Foodplant / parasite
Blumeria graminis parasitises live Poa pratensis sens.str.

Foodplant / parasite
Blumeria graminis parasitises live Poa trivialis

Foodplant / parasite
Blumeria graminis parasitises live Puccinellia distans

Foodplant / parasite
Blumeria graminis parasitises live Secale cereale

Foodplant / parasite
Blumeria graminis parasitises live Sesleria caerulea

Foodplant / parasite
Blumeria graminis parasitises live Trisetum flavescens

Foodplant / parasite
Blumeria graminis parasitises live Triticum aestivum

Foodplant / parasite
Blumeria graminis parasitises live Triticum turgidum

Foodplant / parasite
cleistothecium of Blumeria graminis parasitises live sheath of Elytrigia repens ssp. repens
Remarks: season: 7-10

Foodplant / parasite
cleistothecium of Blumeria graminis parasitises live sheath of Bromus
Remarks: season: 7-10

Foodplant / parasite
cleistothecium of Blumeria graminis parasitises live sheath of Dactylis
Remarks: season: 7-10

Foodplant / parasite
cleistothecium of Blumeria graminis parasitises live sheath of Holcus
Remarks: season: 7-10

Foodplant / parasite
cleistothecium of Blumeria graminis parasitises live sheath of Phleum
Remarks: season: 7-10

Foodplant / parasite
cleistothecium of Blumeria graminis parasitises live sheath of Poa
Remarks: season: 7-10

Foodplant / parasite
Blumeria graminis parasitises live Hordeum

Foodplant / parasite
Blumeria graminis parasitises live Triticum

license
cc-by-nc-sa-3.0
copyright
BioImages
project
BioImages

Oïdi del blat ( Catalan; Valencian )

provided by wikipedia CA

L'oïdi del blat (Blumeria graminis) és un fong patogen que causa oïdi en les gramínies, incloent els cereals el blat o l'ordi entre altres. És l'única espècie dins el gènere Blumeria. També rep el nom d'Erysiphe graminis i (pel seu anamorf) Oidium monilioides o Oidium tritici.

Morfologia

El seu miceli pot cobrir gairebé completament tota la planta. L'ascocarp és de color marró fosc, globós amb apèndixs filamentosos.

Ecologia

Blumeria graminis es dispersa a través de conidis i ascòspores. No creix en medis sintètics de laboratori. Li són favorables condicions relativament fresques i humides. Té una gran diversitat genètica relativa. El seu genoma ha estat seqüenciat [1]

Referències

 src= A Wikimedia Commons hi ha contingut multimèdia relatiu a: Oïdi del blat Modifica l'enllaç a Wikidata
license
cc-by-sa-3.0
copyright
Autors i editors de Wikipedia
original
visit source
partner site
wikipedia CA

Oïdi del blat: Brief Summary ( Catalan; Valencian )

provided by wikipedia CA

L'oïdi del blat (Blumeria graminis) és un fong patogen que causa oïdi en les gramínies, incloent els cereals el blat o l'ordi entre altres. És l'única espècie dins el gènere Blumeria. També rep el nom d'Erysiphe graminis i (pel seu anamorf) Oidium monilioides o Oidium tritici.

license
cc-by-sa-3.0
copyright
Autors i editors de Wikipedia
original
visit source
partner site
wikipedia CA

Blumeria graminis

provided by wikipedia EN

Blumeria graminis (commonly called barley powdery mildew or corn mildew) is a fungus that causes powdery mildew on grasses, including cereals. It is the only species in the genus Blumeria. It has also been called Erysiphe graminis and (by its anamorph) Oidium monilioides or Oidium tritici.

Systematics

Previously B. graminis was included within the genus Erysiphe, but molecular studies have placed it into a clade of its own. In 1975, it was moved to the new monospecific genus Blumeria. Blumeria differs from Erysiphe in its digitate haustoria and in details of the conidial wall. Blumeria is also considered to be phylogenetically distinct from Erisiphe as it solely infects the true grasses of Poaceae.

Eight special forms or formae speciales (ff.spp.) of B. graminis have been distinguished, each of which is parasitic on a particular genus or pareticular genera of grasses. Those that infect crop plants are B. g. f.sp. tritici , which causes powdery mildew of wheat and infects other grasses in the genera Triticum and Aegilops, f.sp. hordei on barley, f.sp. avenae on oats and f.sp. secalis on rye. Other formae speciales are pathogenic on wild grasses, including agropyri on grasses in the genera Agropyron and Elymus, bromi on Bromus spp., poae on Poa spp. and lolii on Lolium spp. (ryegrass).

Morphology

The mycelium can cover the plant surface almost completely, especially the upper sides of leaves. Ascocarp is dark brown, globose with filamentous appendages, asci oblong. Ascospores hyaline, ellipsoid, 20–30 x 10–13 µm in size. Anamorph produces on hyaline conidiophores catenate conidia of oblong to cylindrical shape, not including fibrosin bodies, 32–44 x 12–15 µm in size. Haustoria are palmate.

B. graminis is unique among the Erysiphales by having conidia with a primary germ tube and finger-shaped ("digitate") appressoria.[1]

Taxonomy

The genus name of Blumeria is in honour of Samuel Blumer (b. 1895), a Swiss botanist (Mycology), Phytopathology, from the University of Bern (Universität Bern).[2][3]

The genus was circumscribed by Golovin ex Speer in Sydowia Vol.27 on page 2 in 1975.

Ecology

B. graminis asexually produces conidia and sexually forms ascospores.

Conidia are mainly distributed by wind, pests, or human activities. The water initiating ascospores are hypothesized to be dispersed not only by wind but also by splashing water-droplets.[4]

It is biotrophic, and does not grow on synthetic media. Relatively cool and humid conditions are favourable for its growth. Its relatively great genetic variability enables it often to infect previously resistant plant varieties.

Genetics and Evolution

Genetics

The genomes of B. g. f. sp. hordei[5] and B. g. f. sp. tritici have recently been sequenced.[6] Sequencing of the genome of the wheat powdery mildew B. g. f. sp. tritici, has allowed inference of important aspects of its evolution. It has been seen that it is the most repetitive fungal genome sequenced as of March 2013 with 90% transposable elements. Additionally, 6540 genes were annotated, from which 437 encoded candidate secretor proteins and 165 for non-secreted candidate secretor proteins. These were shown to be subject to positive selection, due to their implication in the gene-for-gene relationship to defeat plant disease resistance. The ability to infect tetraploid- as well as domesticated hexaploid wheat, was seen to be the result of mildew genomes being mosaics of ancient haplogroups that existed before wheat domestication. This has allowed wheat powdery mildew to maintain genetic flexibility, variability and thus a great potential for pathogen variation. It is hypothesized that this mosacisism can be maintained through clonal reproduction in populations with a small effective size or quasi-clonal reproduction in populations with large effective size.

Evolution of Blumeria graminis f.sp. tritici

Wheat powdery mildew is an obligate biotroph with a poorly understood evolutionary history. Sequencing its genome in 2013, many aspects of the evolution of its parasitism were unveiled.[7] Obligate biotrophy has appeared multiple times in evolution in both ascomycetes like B. graminis and basidiomycetes, thus different selective pressure must have acted in the different organisms through time. It has been seen that B. g. f.sp. tritici's genome is a mosaic of haplogroups with different divergence times, which explains its unique pathogen adaptability. Haplogroup Hold (diverged 40-80 mya) allows for the infection of wild tetraploid wheat and Hyoung (diverged 2-10 mya) allows for the infection of both domesticated hexaploid wheat species. Additionally, it has been seen that there is a positive selective pressure acting on genes that code for candidate secretor proteins and non-secreted candidate secretor proteins, indicating that these might participate in the gene-for-gene relationship of plant disease resistance.

Pathology

Powdery mildew of wheat is relatively easy to diagnose[8] due to the characteristic little white spots of cotton-like mycelia.[9] These can appear on the upper and lower epidermis of the leaves. As the disease progresses they become a light tan color.[9] B. g. f. sp. tritici is an obligate parasite which means it only grows on living tissue. Though present throughout wheat growing regions, it especially favors the eastern seaboard of the United States as well as coastal regions of the United Kingdom.

Hosts and symptoms

Triticum spp. (wheat) is the only host of B. g. f. sp. tritici.[8] Signs on the foliage of wheat are white, powdery mycelium and conidia.[10] As the disease progresses, the patches turn gray and small dark black or brown cleistothecia form in the mycelium mass.[11] Symptoms progress from lower to upper leaves. Symptoms of powdery mildew are chlorotic areas surrounding the infected areas.[10] The lower leaf surface corresponding to the mycelial mat will also show chlorosis.[11] Lower leaves are commonly the most infected because of higher humidity around them.[8]

Disease cycle

B. g. f. sp. tritici has a polycyclic life cycle typical of its phylum, Ascomycota. Powdery mildew of wheat overwinters as cleistothecia dormant in plant debris. Under warmer conditions, however, the fungus can overwinter as asexual conidia or mycelium on living host plants. It can persist between seasons most likely as ascospores in wheat debris left in the field. Ascospores are sexual spores produced from the cleistothecia. These spores, as well as conidia, serve as the primary inoculum and are dispersed by wind. Neither spore requires free water to germinate, only high relative humidity.[11] Wheat powdery mildew thrives in cool humid conditions and cloudy weather increases chances of disease. When conidia land on a wheat leaf's hydrophobic surface cuticle, they release proteins which facilitate active transport of lightweight anions between leaf and fungus even before germination. This process helps Blumeria recognize that it is on the correct host and directs growth of the germ tube.[12] Both ascospores and conidia germinate directly with a germ tube. Conidia can recognize the host plant and within one minute of initial contact, the direction of germ tube growth is determined. The development of appressoria then begins infection following the growth of a germ tube.[13] After initial infection, the fungus produces haustoria inside of the wheat cells and mycelium grows on the plant's outer surface.[11] Powdery mildew of wheat produces conidia during the growing season as often as every 7 to 10 days.[14] These conidia function as secondary inoculum as growth and reproduction repeat throughout the growing season.

Environment

Powdery mildew of wheat thrives in cool, humid climates and proliferates in cloudy weather conditions.[15] The pathogen can also be an issue in drier climates if wheat fields are irrigated.[16] Ideal temperatures for growth and reproduction of the pathogen are between 60 °F (16 °C) and 70 °F (21 °C) with growth ceasing above 77 °F (25 °C). Dense, genetically similar plantings provide opportune conditions for growth of powdery mildew.[11]

Management

Controlling the disease involves eliminating conducive conditions as much as possible by altering planting density and carefully timing applications and rates of nitrogen. Since nitrogen fertilizers encourage dense leafy growth, nitrogen should be applied at precise rates, less than 70 pounds per acre, to control decrease severity. Crop rotation with non-host plants is another way to keep mildew infection to a minimum, however the aerial nature of conidia and ascospore dispersal makes it of limited use. Wheat powdery mildew can also be controlled by eliminating the presence of volunteer wheat in agricultural fields as well as tilling under crop residues.[14]

Chemical control is possible with fungicides such as triadimefon and propiconazole. Another chemical treatment involves treating wheat with a silicon solution or calcium silicate slag. Silicon helps the plant cells defend against fungal attack by degrading haustoria and by producing callose and papilla. With silicon treatment, epidermal cells are less susceptible to powdery mildew of wheat.[17]

Milk has long been popular with home gardeners and small-scale organic growers as a treatment for powdery mildew. Milk is diluted with water (typically 1:10) and sprayed on susceptible plants at the first sign of infection, or as a preventative measure, with repeated weekly application often controlling or eliminating the disease. Studies have shown milk's effectiveness as comparable to some conventional fungicides,[18] and better than benomyl and fenarimol at higher concentrations.[19] Milk has proven effective in treating powdery mildew of summer squash,[19] pumpkins,[18] grapes,[20] and roses.[20] The exact mechanism of action is unknown, but one known effect is that ferroglobulin, a protein in whey, produces oxygen radicals when exposed to sunlight, and contact with these radicals is damaging to the fungus.[20]

Another way to control wheat powdery mildew is breeding in genetic resistance, using "R genes" (resistance genes) to prevent infection. There are at least 25 loci on the wheat genome that encode resistance to powdery mildew. If the particular variety of wheat has only one loci for resistance, the pathogen may be controlled only for a couple years. If, however, the variety of wheat has multiple loci for resistance, the crop may be protected for around 15 years. Because finding these loci can be difficult and time-consuming, molecular markers are used to facilitate combining resistant genomes.[15] One organization working towards identifying these molecular markers is the Coordinated Agricultural Project for Wheat . With these markers established, researchers will then be able to determine the most effective combination of resistance genes.[21]

HSP70-4 is an HSP70 – a family of heat shock proteins – in Arabidopsis.[22] The ortholog HvHSP70-4 in barley (Hordeum vulgare) is disclosed by Molitor et al., 2011.[22] They find that it is transcribed in response to B. graminis infection, is protective against Bg infection, and that prophylactic infection with Piriformospora indica produces systemic induced resistsance to Bg.[22]

Importance

Powdery mildew can be found in all wheat growing areas of the United States but usually will be most severe in the east and southeast.[11] It is more common in areas with a humid or semi-arid environment where wheat is grown.[11] Powdery mildew has become a more important disease in some areas because of increased application of nitrogen fertilizer, which favors the development of the fungus.[10] Severe symptoms of powdery mildew can cause stunting of wheat.[10] If unmanaged, this disease can reduce yields significantly by reducing photosynthetic areas and causes non-seed producing tillers.[8] Powdery mildew causes reduced kernel size and lower yields.[14] The sooner powdery mildew begins to develop and how high on the plant it develops by flowering the larger the yield loss.[14] Yield Losses up to 45 percent have been shown in Ohio on susceptible varieties when plants are infected early and weather favors disease.[14]

References

  1. ^ Glawe, Dean (2008). "The Powdery Mildews: A Review of the World's Most Familiar (Yet Poorly Known) Plant Pathogens". Annual Review of Phytopathology. Annual Reviews. 46 (1): 27–51. doi:10.1146/annurev.phyto.46.081407.104740. eISSN 1545-2107. ISSN 0066-4286. PMID 18680422.
  2. ^ Burkhardt, Lotte (2022). Eine Enzyklopädie zu eponymischen Pflanzennamen [Encyclopedia of Eponymic Plant Names] (pdf) (in German). Berlin: Botanic Garden and Botanical Museum, Freie Universität Berlin. doi:10.3372/epolist2022. ISBN 978-3-946292-41-8. S2CID 246307410. Retrieved January 27, 2022.
  3. ^ Who's who in Switzerland Including the Principality of Liechtenstein. International Publications Service. 1981
  4. ^ Zhu, Mo; Riederer, Markus; Hildebrandt, Ulrich (2017). "Very-long-chain aldehydes induce appressorium formation in ascospores of the wheat powdery mildew fungus Blumeria graminis". Fungal Biology. 121 (8): 716–728. doi:10.1016/j.funbio.2017.05.003. PMID 28705398.
  5. ^ Spanu, Pietro D.; et al. (2010). "Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism". Science. 330 (6010): 1543–1546. doi:10.1126/science.1194573. PMID 21148392. S2CID 19651350.
  6. ^ This review... Lo, Libera; Lanver, Daniel; Schweizer, Gabriel; Tanaka, Shigeyuki; Liang, Liang; Tollot, Marie; Zuccaro, Alga; Reissmann, Stefanie; Kahmann, Regine (2015). "Fungal Effectors and Plant Susceptibility". Annual Review of Plant Biology. Annual Reviews. 66 (1): 513–545. doi:10.1146/annurev-arplant-043014-114623. ISSN 1543-5008. PMID 25923844. S2CID 39714412. ...cites this study: Wicker, Thomas; Simone Oberhaensli; Francis Parlange; Jan P. Buchmann; Margarita Shatalina; Stefan Roffler; Roi Ben-David; Jaroslav Doležel; Hana Šimková; Paul Schulze-Lefert; Pietro D. Spanu; Rémy Bruggmann; Joelle Amselem; Hadi Quesneville; Emiel Ver Loren van Themaat; Timothy Paape; Kentaro K. Shimizu; Beat Keller (2013). "The wheat powdery mildew genome shows the unique evolution of an obligate biotroph". Letters. Nature Genetics. Nature Publishing Group. 45 (9): 1092–1096. doi:10.1038/ng.2704. PMID 23852167. S2CID 5648330.
  7. ^ Wicker, T.; Oberhaensli, S.; Parlange, F.; Buchmann, J. P.; Shatalina, M.; Roffler, S.; Keller, B. (2013). "The wheat powdery mildew genome shows the unique evolution of an obligate biotroph" (PDF). Nature Genetics. 45 (9): 1092–6. doi:10.1038/ng.2704. PMID 23852167. S2CID 5648330.
  8. ^ a b c d Maloy, Otis and Debra Inglis (1993) Powdery Mildew, Washington State University Extension, Diseases of Washington Crops. Retrieved from [1]
  9. ^ a b Stromburg. (2010). Wheat Powdery mildew. Retrieved from http://www.ppws.vt.edu/stromberg/w_powder_mildew.html Archived 2012-05-07 at the Wayback Machine.
  10. ^ a b c d Wegulo, Stephen (2010). Powdery Mildew of Wheat. Retrieved from University of Nebraska Lincol. "Publication: Powdery Mildew of Wheat". Archived from the original on 2012-04-15. Retrieved 2014-06-01.
  11. ^ a b c d e f g Partridge, Dr. J. E. (2008). "Powdery Mildew of Wheat," University of Nebraska-Lincoln Department of Plant Pathology. Retrieved from University of Nebraska–Lincoln. "Powdery Mildew of Wheat Key words: Plant Disease, Wheat, Triticum, Blumeria graminis f. Sp. Tritici, Erysiphe graminis f. Sp. Tritici, Oidium monilioides". Archived from the original on 2012-08-19. Retrieved 2014-06-01..
  12. ^ Nielson, Kristen A.; et al. (February 2000). "First touch: An immediate response to surface recognition in conidia of Blumeria graminis". Physiological and Molecular Plant Pathology. 56 (2): 63–70. doi:10.1006/pmpp.1999.0241.
  13. ^ Wright, Alison J.; et al. (2002). "The rapid and accurate determination of germ tube emergence site by Blumeria graminis conidia". Physiological and Molecular Plant Pathology. 57 (6): 281–301. doi:10.1006/pmpp.2000.0304.
  14. ^ a b c d e Lipps, Patrick E. (n.d). "Powdery Mildew of Wheat," The Ohio State University Extension. Retrieved from http://ohioline.osu.edu/ac-fact/0010.htmltm.
  15. ^ a b Huang, X. Q.; Hsam, S. L. K.; Zeller, F. J.; Wenzel, G.; Mohler, V. (2000). "Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding". Theoretical and Applied Genetics. 101 (3): 407–414. doi:10.1007/s001220051497. S2CID 20354017.
  16. ^ Bennett, Fiona G. A. (1984). "Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes". Plant Pathology. 33 (3): 279–300. doi:10.1111/j.1365-3059.1984.tb01324.x.
  17. ^ Belanger, R. r. et al. (April 2003). Cytological Evidence of an Active Role of Silicon in Wheat Resistance to Powdery Mildew (Blumeria graminis f. sp. tritici). Phytopathology, 93. American Phytopathological Society. Retrieved from http://www.siliforce.com/pdf/7c/Belanger-%20%20evedence%20silicon%20powdery%20mildew%20on%20wheat.pdf Archived 2016-03-04 at the Wayback Machine.
  18. ^ a b DeBacco, Matthew. "Compost Tea and Milk to Suppress Powdery Mildew (Podosphaera xanthii) on Pumpkins and Evaluation of Horticultural Pots Made from Recyclable Fibers Under Field Conditions". University of Connecticut. Retrieved 5 May 2013.
  19. ^ a b Bettiol, Wagner (September 1999). "Effectiveness of cow's milk against zucchini squash powdery mildew (Sphaerotheca fuliginea) in greenhouse conditions". Crop Protection. 18 (8): 489–492. doi:10.1016/s0261-2194(99)00046-0.
  20. ^ a b c Raloff, Janet. "A Dairy Solution to Mildew Woes". Science News Magazine. Retrieved 5 May 2013.
  21. ^ Griffey, Carl et al. "Wheat Cap Facts: Powdery Mildew", University of California-Davis, May 2007. Retrieved on 2011-11-12 from http://maswheat.ucdavis.edu/education/PDF/facts/powderymildew.pdf.
  22. ^ a b c Berka, Miroslav; Kopecka, Romana; Berkova, Veronika; Brzobohaty, Bretislav; Cerny, Martin (2022). "Regulation of heat shock proteins 70 and their role in plant immunity". Journal of Experimental Botany. Oxford University Press. 73 (7): 1894–1909. doi:10.1093/jxb/erab549. ISSN 0022-0957. PMC 8982422. PMID 35022724.
  • Pietro D. Spanu et al., Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Functional Tradeoffs in Parasitism, in: Science. December 10, 2010 [2]
  • British Erysiphales [3]
  • Edwards, H H (2002-10-01). "Development of primary germ tubes by conidia of Blumeria graminis f.sp. hordei on leaf epidermal cells of Hordeum vulgare". Canadian Journal of Botany. Canadian Science Publishing. 80 (10): 1121–1125. doi:10.1139/b02-092. ISSN 0008-4026.
  • NIAES, Microbial Systematics Lab page on Blumeria [4]
  • Costamilan, 2005 [5]
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Blumeria graminis: Brief Summary

provided by wikipedia EN

Blumeria graminis (commonly called barley powdery mildew or corn mildew) is a fungus that causes powdery mildew on grasses, including cereals. It is the only species in the genus Blumeria. It has also been called Erysiphe graminis and (by its anamorph) Oidium monilioides or Oidium tritici.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Blumeria graminis ( Spanish; Castilian )

provided by wikipedia ES

El mildiu del trigo es una patología del trigo causada por el patógeno biotrófico Blumeria graminis forma specialis tritici. Su principal característica es la presencia de un polvo de color blanquecino sobre las hojas del trigo. La infección acaba afectando al crecimiento vegetativo, frutos, semillas y flores provocando graves pérdidas en el rendimiento de los cultivos.[1]

Ciclo vital

 src=
Ciclo vital del mildiu del trigo

Blumeria Graminis puede reproducirse tanto sexual como asexualmente, produciéndose la infección durante el ciclo asexual.[2]​ La infección comienza a finales de la primavera, comienzos del verano cuando los conidios(n) se sitúan en la superficie de la hoja y atraviesan la pared celular vegetal formando apresorios. Una vez en el interior celular, el hongo forma haustorium produciéndose una invaginación de la membrana plasmática que permite la captación de nutrientes de la planta por el hongo. Posteriormente, el hongo crece hifas secundarias capaces de formar conidiosporas(n) que pueden ser dispersadas por anemocoria. El ciclo sexual comienza a finales de verano, principios de otoño cuando las hifas secundarias de diferentes tipos se recombinan produciendo casmotecios o cleistotecios que poseen ascosporas(n) en su interior capaces de producir una nueva generación. Los cleistotecios además son resistentes a condiciones adversas, permitiendo sobrevivir al hongo en condiciones de sequía y frío. Esto complica aún más el tratamiento de la infección, ya que durante el invierno habría una infección latente. También se ha visto que los conidios son capaces de resistir el invierno en trigo plantado a comienzos del invierno o trigo que germina después de la recogida de la cosecha.[3]

Evolución Blumeria graminis forma specialis tritici

El mildiu del trigo es un parásito biotrófico obligado con una historia evolutiva poco conocida que infecta tanto a trigo hexaploide como tetraploide. Esta estrategia parasítica según la cual el hongo crece sobre huéspedes vivos, está presente en hongos muy alejados filogenéticamente. El hecho de que la mayoría de los ascomycetes y basidiomycetes no adopten esta estrategia vital, pero esté presente en ambas divisiones, sugiere que esta estrategia ha surgido múltiples veces durante la evolución. La secuenciación de su genoma ha permitido dilucidar ciertos aspectos de la naturaleza de su estrategia parasítica.[4]​ Se trata del genoma fúngico secuenciado hasta ahora más repetitivo con un 90% de elementos genéticos móviles y 6540 genes anotados. Analizando estos genes, se ha observado un patrón similar con otros biotrofos obligados de ausencia o disminución de genes implicados en metabolismo primario y secundario. En cuanto al mecanismo de la infección, se ha observado una mayor presión selectiva en los genes codificantes para proteínas secretoras efectoras confirmando su importante papel en la infección. Por otro lado, su capacidad de infectar tanto trigo tetraploide como hexaploide se ha visto que es debido al mosaicismo de su genoma. Este mosaicismo es debido a la presencia de segmentos del genoma compuestos de haplogrupos con mayores tiempo de divergencia (40-80 millones de años) que permiten la infección del trigo tetraploide, y de haplogrupos con menores tiempo de divergencia (2-10 millones de años) que permiten la infección del trigo hexaploide. Se hipotetiza que este mosaicismo, que ha permitido mantener altos niveles de adaptabilidad y flexibilidad, se ha mantenido mediante la reproducción asexual o clonal en poblaciones con un tamaño efectivo pequeño o una reproducción sexual o casi-clonal en poblaciones con un tamaño efectivo grande.

Referencias

  1. Hsam, S.L.K. & Zeller F.J. The powdery mildews: a comprehensive treatise, chap. 14, 219–238 (APS press, St. Paul, 2002).
  2. Zhang, Z. et al. Of genes and genomes, needles and haystacks: Blumeria graminis and functionality. Mol Plant Pathol 6, 561–575 (2005).
  3. Liu, N. et al. Over-summering of wheat powdery mildew in Sichuan province, China. Crop Protection 34, 112–118 (2012).
  4. Wicker, T., Oberhaensli, S., Parlange, F., Buchmann, J. P., Shatalina, M., Roffler, S., … Keller, B. (2013). The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature genetics, 45(9), 1092–6. doi:10.1038/ng.2704]
 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Blumeria graminis: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

El mildiu del trigo es una patología del trigo causada por el patógeno biotrófico Blumeria graminis forma specialis tritici. Su principal característica es la presencia de un polvo de color blanquecino sobre las hojas del trigo. La infección acaba afectando al crecimiento vegetativo, frutos, semillas y flores provocando graves pérdidas en el rendimiento de los cultivos.​

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Blumeria graminis ( French )

provided by wikipedia FR

Blumeria graminis est une espèce de champignons ascomycètes de la famille des Erysiphaceae. Ce champignon phytopathogène est l'agent d'une maladie fongique (« blanc » des céréales ou oïdium des céréales) qui touche certains végétaux de la famille des Poaceae. On la trouve notamment sur les feuilles des céréales.

C'est la seule espèce du genre Blumeria (genre monotypique). Elle était autrefois aussi appelée Erysiphe graminis, Oidium monilioides ou Oidium tritici.

Systématique

Antérieurement Blumeria graminis était incluse dans le genre Erysiphe, mais des études de biologie moléculaire ont conduit à la renommer. Le genre Blumeria diffère également morphologiquement des Erysiphe (par la forme de ses haustoria et par des détails des parois des conidies).

Huit « formes spéciales » (ff. spp.) de Blumeria graminis ont été distinguées, chacune correspondant au parasitisme d'un genre botanique particulier.

Pathogénicité et prévalence

C'est une maladie fongique courante sur l'orge et de nombreuses cultures céréalières en Europe du Nord. L'infection est causée par différentes formae speciales de Blumeria graminis, qui parasite un genre de plante particulier. B. graminis f. sp. tritici parasite le blé (Triticum sp.), f. sp. hordei parasite l'orge (Hordeum sp.), f. sp. avenae parasite l'avoine (Avena sp.), f. sp. secalis le seigle (Secale sp.) et f. sp. agropyri parasite des herbes des genres Agropyron et Elymus.

Morphologie

Le mycélium peut coloniser la surface des feuilles presque complètement, notamment la face supérieure des feuilles. Les fructifications des cléistothèces sont brun foncé, globuleuses avec des asques filamenteuses. Les ascospores sont ellipsoïdes, mesurant 20-30 × 10-13 µm environ.

Écologie

Comme les autres oïdiums, c'est un champignon biotrophe qui est dispersé par ses conidies ou ses ascospores. Parmi les oïdiums, c'est un de ceux qui se développent le mieux par temps assez sec[2].

Génétique

Le génome de Blumeria graminis f. sp. hordei a récemment été séquencé[3], dans le cadre du projet BIOEXPLOIT (« Exploitation of natural plant biodiversity for the pesticide-free production of food »), avec l'aide de l'Europe. Le génome de Blumeria graminis f. sp. tritici a été séquencé en 2013 [1] et a permis de découvrir des aspects très intéressants de l'évolution du parasitisme dans cette forma specialis.

C'est le génome fongique le plus répétitif que a été séquencé avec 90 % d'élément transposables[4].

Blumeria graminis forma specialis tritici

Blumeria graminis forma specialis tritici parasite le blé (Triticum sp.) et cause l'oïdium du blé. Cette maladie est très facile à diagnostiquer, mais difficile à traiter. Au début, de petit cercles blancs apparaissent à la surface des feuilles atteintes par l'infection. Plus tard les cercles deviennent gris et noirs.

Reproduction

 src=
Reproduction de l'oïdium du blé.

La reproduction est sexuée et asexuée, mais l'infection se produit pendant la phase asexuée[5]. L'infection commence à la fin du printemps ou au début de l'été quand les conidies arrivent à la surface des feuilles et pénètrent dans la paroi cellulaire. Une fois à l'intérieur des cellules, le champignon forme l' haustorium qui permet obtenir des éléments nutritifs du blé. Ensuite, la formation d'hyphes secondaires peut conduire à la formation de conidies qui permettent la dispersion du pathogène. La phase sexuée commence à la fin de l'été quand les hyphes secondaires se recombinent et les cléistothèces contenant les ascospores sont formées. Ces cléistothèces peuvent survivre dans des conditions défavorables, et permettent la survie des spores pendant l'hiver. Les conidies peuvent aussi résister à l'hiver dans des « ponts verts »[6].

Notes et références

  1. a b c et d BioLib, consulté le 28 juin 2020
  2. INRA
  3. À propos du séquençage de Blumeria graminis sur CORDIS
  4. Wicker, T., Oberhaensli, S., Parlange, F., Buchmann, J. P., Shatalina, M., Roffler, S., … Keller, B. (2013). The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature genetics, 45(9), 1092–6. doi:10.1038/ng.2704]
  5. Zhang, Z. et al. Of genes and genomes, needles and haystacks: Blumeria graminis and functionality. Mol Plant Pathol 6, 561–575 (2005).
  6. Liu, N. et al. Over-summering of wheat powdery mildew in Sichuan province, China. Crop Protection 34, 112–118 (2012).

Voir aussi

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Blumeria graminis: Brief Summary ( French )

provided by wikipedia FR

Blumeria graminis est une espèce de champignons ascomycètes de la famille des Erysiphaceae. Ce champignon phytopathogène est l'agent d'une maladie fongique (« blanc » des céréales ou oïdium des céréales) qui touche certains végétaux de la famille des Poaceae. On la trouve notamment sur les feuilles des céréales.

C'est la seule espèce du genre Blumeria (genre monotypique). Elle était autrefois aussi appelée Erysiphe graminis, Oidium monilioides ou Oidium tritici.

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Blumeria graminis ( Italian )

provided by wikipedia IT

Il mal bianco dei cereali (Blumeria graminis (DC) Speer, 1975, anamorfo: Oidium monilioides (Nees) Link 1824) è un fungo fitopatogeno della famiglia Erysiphaceae, rinvenibile su varie specie di graminacee spontanee e coltivate.

Sistematica

In passato il fungo apparteneva al genere Erysiphe; attualmente, studi di biologia molecolare hanno permesso di ascriverlo al genere Blumeria, di cui rappresenta l'unica specie. Morfologicamente differisce da Erysiphe per la forma degli austori e per alcuni dettagli della parete cellulare dei conidi.

Attualmente i termini Blumeria graminis e Erysiphe graminis sono considerati sinonimi. L'anamorfo del fungo viene indicato come Oidium monilioides o Oidium tritici.

All'interno di Blumeria graminis sono distinguibili alcune formae speciales, in base alla specie vegetale colpita[1],[2].

  • Blumeria graminis f. sp. agropyri: rilevata su specie dei generi Agropyron e Elymus
  • Blumeria graminis f. sp. avenae: attacca l'avena coltivata nonché le specie selvatiche
  • Blumeria graminis f. sp. bromi: colpisce specie selvatiche e coltivate del genere Bromus
  • Blumeria graminis f. sp. hordei: responsabile degli attacchi su orzo
  • Blumeria graminis f. sp. lolii: su specie del genere Lolium
  • Blumeria graminis f. sp. poae: su Poa spp., può danneggiare i tappeti erbosi ornamentali
  • Blumeria graminis f. sp. secalis: causa il mal bianco su segale coltivata e selvatica
  • Blumeria graminis f. sp. tritici: colpisce il frumento ed altre specie del genere Triticum; è stata segnalata anche su specie del genere Aegilops

Ospiti

Il fungo colpisce principalmente frumento, orzo, avena e segale. Attacca inoltre molte graminacee spontanee e può rappresentare un problema sui tappeti erbosi ornamentali e sportivi, in particolare su Poa pratensis. Attacchi del fungo sono stati segnalati su più di sessanta specie in Italia e su centinaia di specie in tutto il mondo[3].

Sintomatologia ed identificazione

Blumeria graminis può attaccare tutte le parti epigee della pianta, ma si localizza prevalentemente sulla pagina superiore delle foglie partendo da quelle basali. Sulla superficie delle stesse è possibile notare inizialmente delle pustole, che evolvono in macchie puntiformi, via a via più estese, ricoperte da una muffa di consistenza soffice e di colore bianco – grigiastro. I tessuti attorno alle aree colpite assumono una colorazione brunastra e necrotizzano. Tale sintomatologia compromette la capacità fotosintetica della pianta. All'interno del feltro miceliare si sviluppano i casmoteci, osservabili come formazioni tondeggianti di colore nerastro. Le foglie colpite ingialliscono e seccano, mentre i culmi si indeboliscono e si piegano nella parte apicale. Gli attacchi più gravi si hanno in primavera, nelle fasi di levata e spigatura. In caso di gravi epidemie si possono avere perdite di produzione del 30% oltre ad un peggioramento qualitativo della granella.

 src=
Macchie di mal bianco su foglia

Il fungo forma conidiofori corti provvisti di cellula basale rigonfiata. I conidi, di forma ellissoidale, incolori e dalle dimensioni di 25-35 x 10-15 µm sono disposti in lunghe catene di 10-20 elementi. I casmoteci dal diametro di 120 - 200 µm, sono immersi nel feltro miceliare e contengono 8-25 aschi con 8 ascospore ciascuno.

Biologia ed epidemiologia

Blumeria graminis è un parassita obbligato, incapace quindi di crescere al di fuori di un tessuto vivente.

Le infezioni possono prendere avvio sia dalle ascospore che dai conidi. Questi ultimi, più importanti da un punto di vista epidemiologico, sono prodotti dal micelio in primavera. Grazie all'azione del vento vengono trasportati a distanza fino a posarsi su superfici fogliari recettive, formando un appressorio che ne garantisce l'adesione. A questo punto emettono un tubulo germinativo che perfora la cuticola vegetale e penetra nei tessuti sottostanti, dove vengono differenziati gli austori che permettono l'assorbimento di sostanze nutritive. Il periodo di incubazione della malattia si aggira, in genere, tra i 5 e i 10 giorni.

Le temperature ottimali per le infezioni di Blumeria graminis sono comprese tra 15 – 20 °C, ma possono aversi entro un range di 3 – 30 °C. Anche se un livello di umidità relativa elevato (> 90%) è necessario per lo sviluppo dell'infezione, la presenza di un velo d'acqua sulle superfici fogliari limita gli attacchi del patogeno. Le infezioni più gravi si hanno quando si alternano periodi di tempo siccitoso a periodi più umidi.

Nelle regioni con estati aride la formazione di cleistoteci garantisce la sopravvivenza del fungo alle condizioni avverse. Nelle zone a clima temperato i cleistoteci rivestono invece un'importanza secondaria. Durante i mesi autunnali, in condizioni di elevata umidità relativa, i cleistoteci liberano le ascospore assicurando la ripresa delle infezioni sui cereali vernini. Nel periodo invernale il fungo rimane quiescente, svernando come micelio sulle piante infette, per poi riprendere con le infezioni conidiche in primavera.

Distribuzione geografica

Blumeria graminis è presente in quasi tutte le regioni dove sono coltivati i cereali. Diventa importante in particolare nelle zone umide o nelle aree siccitose nelle quali venga impiegata l'irrigazione. Il mal bianco dei cereali causa gravi danni nelle regioni fredde della Cina, Giappone e Asia; in Nord Europa, in Nord America e nelle regioni settentrionali e orientali dell'Africa. È importante anche in regioni caldo - umide con inverno mite, come in alcune zone del Sud America e Sud-est degli Stati Uniti. L'intensità degli attacchi è invece minore nelle aree con piogge particolarmente intense, in quanto la pioggia battente sfavorisce la germinazione dei conidi sulle foglie.

Lotta

La lotta contro il mal bianco dei cereali è essenzialmente preventiva in quanto i trattamenti fungicidi rappresentano generalmente un costo troppo elevato per questo tipo di coltura. Tra gli accorgimenti agronomici che consentono di limitare gli attacchi del fungo ricordiamo:

  • evitare le semine eccessivamente fitte
  • evitare le semine precoci
  • limitare gli apporti di azoto ai fabbisogni della coltura
  • impiegare cultivar resistenti
  • impiegare miscugli di cultivar

In Italia i trattamenti fungicidi sui cereali vengono eseguiti solo in caso di attacchi particolarmente gravi, prevedendo una soglia di intervento di 10 - 12 pustole uniformemente distribuite sulle ultime due foglie. In tali casi possono essere effettuati trattamenti fungicidi con prodotti a base di propiconazolo, ciproconazolo, tebuconazolo e triadimenol.[4]

Per quanto riguarda i tappeti erbosi ornamentali o sportivi è consigliabile:

  • porre il tappeto erboso in zone soleggiate e con buona circolazione dell'aria
  • aumentare l'altezza di taglio (tagliare poco)
  • impiegare specie e cultivar poco suscettibili
  • in prati di pregio trattare con prodotti a base di propiconazolo ai primi sintomi

Note

  1. ^ Rebecca A. Wyand, Brown James K.M., Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host-pathogen co - evolution , in Molecular Plant Pathology, vol. 4, n. 3, 2003, pp. 187 - 198, DOI:10.1046/j.1364-3703.2003.00167.x. URL consultato il 20 febbraio 2009.
  2. ^ Taxonomy browser - NCBI, su ncbi.nlm.nih.gov. URL consultato il 20-02-2009.
  3. ^ Systematic Mycology and Microbiology Laboratory Fungus-Host Database, su nt.ars-grin.gov. URL consultato il 21-02-2009 (archiviato dall'url originale il 22 gennaio 2009).
  4. ^ Ricardo T. Casa, et. al., Sensibilidade de Blumeria graminis f.sp. tritici a alguns fungicidas (PDF), in Fitopatologia brasileira, vol. 27, n. 6, 2002, pp. 626-630, DOI:10.1590/S0100-41582002000600012. URL consultato il 27 febbraio 2009.

Bibliografia

 title=
license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Blumeria graminis: Brief Summary ( Italian )

provided by wikipedia IT

Il mal bianco dei cereali (Blumeria graminis (DC) Speer, 1975, anamorfo: Oidium monilioides (Nees) Link 1824) è un fungo fitopatogeno della famiglia Erysiphaceae, rinvenibile su varie specie di graminacee spontanee e coltivate.

license
cc-by-sa-3.0
copyright
Autori e redattori di Wikipedia
original
visit source
partner site
wikipedia IT

Erysiphe graminis ( Dutch; Flemish )

provided by wikipedia NL

Schimmels

Erysiphe graminis (syn. Blumeria graminis) (teleomorfe fase) is een echte meeldauwschimmel, die granen en grassen aantast en behoort tot de ascomyceten. De anamorfe fase wordt Oidium monilioides of Oidium tritici genoemd. Naar aanleiding van moleculaire studies is in 1975 Erysiphe graminis afgezonderd van het geslacht Erysiphe en kreeg het een eigen geslacht Blumeria, maar de naam Erysiphe graminis wordt nog veel gebruikt.

Er zijn vele soortspecifieke vormen (forma specialis, afgekort f. sp.), zoals:

  • Erysiphe graminis f.sp. tritici bij gewone tarwe
  • Erysiphe graminis f.sp. hordei bij gerst
  • Erysiphe graminis f.sp. secalis bij rogge
  • Erysiphe graminis f.sp. avenae bij haver
  • Erysiphe graminis f.sp. poae bij veldbeemdgras

Het mycelium kan bijna de gehele plant bedekken, maar komt vooral voor op de bovenzijde van het blad. Het vruchtlichaam (ascocarp) is donkerbruin en bolrond met draderige aanhangsels. De asci zijn langwerpig en bevatten geen fibrosine-lichaampjes. De doorschijnende, ellipsvormige ascosporen zijn 20–30 x 10–13 µm groot. De 32–44 x 12–15 µm grote conidiosporen zijn ovaal tot cilindrisch en zitten aaneengeregen op doorschijnende conidioforen. De haustoria zijn handvormig.

Erysiphe graminis infecteert de plant vooral onder droge en warme omstandigheden.

Levenscyclus

Erysiphe graminis f.sp. tritici overwintert als cleistothecia in dode plantenresten. In milde winters kunnen de conidiën ook overleven op levende planten. Ascosporen en conidiën worden door de wind verspreid en kiemen bij een hoge relatieve luchtvochtigheid op een geschikte waardplant.[1] De schimmel groeit het beste bij warm, droog, bewolkt weer. Conidiën geven voor het herkennen van de waardplant eiwitten of anionen af al voordat de kieming begint.[2] Zowel ascosporen als conidiosporen vormen tijdens de kieming een kiemhyfe. Binnen de minuut herkent het conidium de waardplant en wordt de groeirichting van de kiemhyfe bepaald. Vervolgens wordt er een appressorium gevormd en begint de infectie.[3] Na de infectie worden er haustoria in de plantencellen gevormd en begint de mycelium groei aan de buitenkant van het blad.[1] Gedurende het groeisizoen worden er om de 7 - 10 dagen nieuwe conidia gevormd, die voor nieuwe infecties zorgen.[4]

Genetische achtergrond

Het genoom van Erysiphe graminis f.sp. tritici heeft met 90 % springende genen de meeste repetitieve sequenties (repeats). Repetitieve sequenties zijn stukjes DNA of RNA, die in meerdere kopieën in het genoom voorkomen.[5]. Het genoom omvat 6540 genen, vergelijkbaar met gisten, maar minder dan genomen van andere schimmels. De analyse van deze genen laat een vergelijkbaar patroon zien met die van andere, obligaat biotrofe (kunnen alleen groeien op levende planten) schimmels.

Resistentie

Bij Erysiphe graminis komen naast formae specialis ook veel fysio's[6][7] voor. De resistentie van een ras hangt af van het aanwezige fysio. Bij zeer goed resistente rassen is geen aantasting te zien. Bij iets minder resistente rassen is er sprake van een overgevoeligheidsreactie, waarbij het plantenweefsel snel afsterft en er necrotische vlekken ontstaan. Hierbij is er weinig schimmel te zien. In het genoom van gewone tarwe zitten ten minste 25 resistentiegenen tegen Erysiphe graminis f.sp. tritici, maar door de grote genetische variatie in Erysiphe graminis f.sp. tritici wordt een gen-om-gen resistentie echter gemakkelijk doorbroken.

Bronnen, noten en/of referenties
  1. a b Partridge, Dr. J. E. (2008). "Powdery Mildew of Wheat," University of Nebraska- Lincoln Department of Plant Pathology. Retrieved from https://web.archive.org/web/20120819031802/http://nu-distance.unl.edu/homer/disease/agron/wheat/whpowmil.html.
  2. (February 2000) First touch: An immediate response to surface recognition in conidia of Blumeria graminis. Physiological and Molecular Plant Pathology 56: 63–70 . DOI: 10.1006/pmpp.1999.0241.
  3. (2002). The rapid and accurate determination of germ tube emergence site by "Blumeria graminis" conidia. Physiological and Molecular Plant Pathology 57: 281–301 . DOI: 10.1006/pmpp.2000.0304.
  4. Lipps, Patrick E. (n.d). "Powdery Mildew of Wheat," The Ohio State University Extension. Retrieved from http://ohioline.osu.edu/ac-fact/0010.htmltm.
  5. (2013). The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature Genetics 45 (9): 1092–6 . DOI: 10.1038/ng.2704.
  6. Virulence Genes and Virulence Gene Frequencies of Blumeria graminis f.sp. tritici in Ohio
  7. 3 Profiles in Pathogenesis and Mutualism: Powdery Mildews by CHRISTOPHER JAMES RIDOUT
Wikimedia Commons Zie de categorie Blumeria graminis van Wikimedia Commons voor mediabestanden over dit onderwerp.
license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Erysiphe graminis: Brief Summary ( Dutch; Flemish )

provided by wikipedia NL

Erysiphe graminis (syn. Blumeria graminis) (teleomorfe fase) is een echte meeldauwschimmel, die granen en grassen aantast en behoort tot de ascomyceten. De anamorfe fase wordt Oidium monilioides of Oidium tritici genoemd. Naar aanleiding van moleculaire studies is in 1975 Erysiphe graminis afgezonderd van het geslacht Erysiphe en kreeg het een eigen geslacht Blumeria, maar de naam Erysiphe graminis wordt nog veel gebruikt.

Er zijn vele soortspecifieke vormen (forma specialis, afgekort f. sp.), zoals:

Erysiphe graminis f.sp. tritici bij gewone tarwe Erysiphe graminis f.sp. hordei bij gerst Erysiphe graminis f.sp. secalis bij rogge Erysiphe graminis f.sp. avenae bij haver Erysiphe graminis f.sp. poae bij veldbeemdgras

Het mycelium kan bijna de gehele plant bedekken, maar komt vooral voor op de bovenzijde van het blad. Het vruchtlichaam (ascocarp) is donkerbruin en bolrond met draderige aanhangsels. De asci zijn langwerpig en bevatten geen fibrosine-lichaampjes. De doorschijnende, ellipsvormige ascosporen zijn 20–30 x 10–13 µm groot. De 32–44 x 12–15 µm grote conidiosporen zijn ovaal tot cilindrisch en zitten aaneengeregen op doorschijnende conidioforen. De haustoria zijn handvormig.

Erysiphe graminis infecteert de plant vooral onder droge en warme omstandigheden.

license
cc-by-sa-3.0
copyright
Wikipedia-auteurs en -editors
original
visit source
partner site
wikipedia NL

Blumeria graminis ( Polish )

provided by wikipedia POL
 src=
liście z grzybnią i klejstotecjami

Blumeria graminis (DC.) Speer – gatunek grzybów z klasy Dothideomycetes[1]. Jest to jedyny gatunek należący do monotypowego rodzaju Blumeria. Pasożyt obligatoryjny, wywołuje chorobę o nazwie mączniak prawdziwy zbóż i traw[2].

Systematyka i nazewnictwo

Pozycja w klasyfikacji według Index Fungorum: Blumeria, Erysiphaceae, Erysiphales, Leotiomycetidae, Leotiomycetes, Pezizomycotina, Ascomycota, Fungi [1].

Po raz pierwszy zdiagnozował go w 1815 r. de Candolle nadając mu nazwę Erysiphe graminis. Obecną, uznaną przez Index Fungorum nazwę nadał mu E.O. Speer w 1975 r[1].

Synonimy[3]:

  • Acrosporium monilioides Nees 1816
  • Erysiphe communis f. graminis (DC.) Fr. 1829
  • Erysiphe graminis DC. 1815
  • Oidium monilioides (Nees) Link 1824
  • Oidium monilioides (Nees) Link 1824 var. monilioides
  • Tigria graminis (DC.) Trevis. 1853

Morfologia

Grzyb mikroskopijny. Jego grzybnia rozwija się na łodygach i obydwu stronach blaszek liściowych roślin. Jest rozproszona lub tworząca plamy, początkowo cienka i biała, potem grubsza, filcowata i ciemniejsza – ochrowa lub rdzawobrązowa. Strzępki powyginane, rozgałęzione, septowane, o szerokości 3,5–5,5 μm i długości 35–53 μm. Konidiofory wyprostowane, pierwszy człon ma długość 60–90 μm, powyżej niego są jeszcze krótsze komórki o długości 12,5–25 μm. Zarodniki konidialne tworzą się w łańcuszkach. Są elipsoidalne lub cytrynowate, czasami rozszerzone na jednym końcu. Mają rozmiar (20) 24–35 (45) × (8) 12–16 (20) μm. Strzępki rostkowe wyrastają z obydwu końców, lub z boku zarodnika. Są proste lub nieco powyginane, mają długość 12–55 μm i szerokość 2,5–4 μm. Na ich końcu wyrasta brodawkowata przycistka. Ssawki palczaste. Grzybnia wtórna zbudowana z prostych lub zakrzywionych strzępek o długości 200–400 μm i szerokości 4–7 μm, początkowo bezbarwnych, potem szarawych, ochrowych lub rdzawobrązowych[4].

Na grzybni w skupiskach wyrastają kuliste, początkowo lekko wgłębione, potem wklęsłe klejstotecja, zazwyczaj zanurzone w gęstej warstwie grzybni. Mają średnicę 110–280 μm. Zbudowane są z nieregularnie wielokątnych komórek o średnicy 8–20 μm. Z dolnej połowy klejstotecjum wyrasta od kilku do wielu przyczepek, przeważnie słabo rozwiniętych. Są podobne do strzępek, cienkościenne, poplątane z grzybnią, bezbarwne lub ubarwione, septowane, i zazwyczaj krótsze od klejstotecjum. Tylko rzadko rozgałęziają się. W klejstotecjum worki w liczbie 6-30. Są 8-zarodnikowe, mają długość 50–105 μm i szerokość 20–45 μm. Askospory elipsoidalne lub jajowate, bezbarwne lub słabo ubarwione, o rozmiarach 20–24 × 10–14 μm[4].

Występowanie

Jest szeroko rozprzestrzeniony. Zanotowano jego występowanie w Ameryce Północnej i Środkowej, Europie, Azji i Nowej Zelandii[4].

Jego żywicielami są gatunki z rodziny wiechlinowatych, należące do rodzajów: perz, owies, kupkówka, turówka, jęczmień, perłówka, mannica, wiechlina, żyto, pszenica, Bechmannia. W niektórych krajach podawane jest występowanie także na innych gatunkach[4].

Przypisy

  1. a b c Index Fungorum (ang.). [dostęp 2016-12-264].
  2. red.: Selim Kryczyński i Zbigniew Weber: Fitopatologia. Tom 2. Choroby roślin uprawnych. Poznań: PWRiL, 2011, s. 350-352. ISBN 978-83-09-01077-7.
  3. Species Fungorum (ang.). [dostęp 2016-12-26].
  4. a b c d Mycobank. Blumeria graminis. [dostęp 2016-12-26].
license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Blumeria graminis: Brief Summary ( Polish )

provided by wikipedia POL
 src= liście z grzybnią i klejstotecjami

Blumeria graminis (DC.) Speer – gatunek grzybów z klasy Dothideomycetes. Jest to jedyny gatunek należący do monotypowego rodzaju Blumeria. Pasożyt obligatoryjny, wywołuje chorobę o nazwie mączniak prawdziwy zbóż i traw.

license
cc-by-sa-3.0
copyright
Autorzy i redaktorzy Wikipedii
original
visit source
partner site
wikipedia POL

Žitna pepelovka ( Spanish; Castilian )

provided by wikipedia SL

Žitna pepelovka, tudi pšenična pepelasta plesen[1] (znanstveno ime Blumeria graminis), je gliva, ki prizadene vrste iz družine trav, med njimi tudi prava žita. Nekdaj je bila znana kot Erysiphe graminis DC., po anamorfni obliki pa tudi kot Oidium monilioides ali Oidium tritici.

Opis

Micelij je nežen in sivkastobele barve, podoben pajčevini. Sprva je redek, z rastjo postaja vse gostejši,[2] lahko prekrije celotne dele rastline, zlasti zgornjo stran listov. Trosnjak je temno rjav in okroglast z opaznimi nitmi, aski so podolžni. Spore so prosojne, pakrožne, velike 20-30 x 10-13 µm. Anamorf ima prosojne konidiofore s podolgovatimi ali valjastimi konidiji (brez fibrozinskih telesc), velike 32-44 x 12-15 µm. Havstoriji so žarkasto razvejeni.

Rastišče

Gliva ima več specializiranih različkov, ki so prilagojene določenemu žitu; najpogosteje okuži ječmen in pšenico, redkeje in oves. Bolezen se pojavi pri dnu listov ali stebla.[3] Z ostankov okuženih rastlin se lahko že jeseni prenese na ozimno vsejano žito in ob žetvi izpadlo zrnje, predvsem pri ječmenu, redkeje pri pšenici. Ob sušnejših razmerah okužuje tudi zgodaj spomladi.[4] Takšna okužba je nevarna, saj gliva ovira rastlinsko dihanje in asimilacijo snovi, hkrati pa povečuje izhlapevanje. Žito se tako suši, odmira in prezgodaj dozori, zrna so zato majhna in nagubana. Proti bolezni se uporabljajo fungicidna škropiva ter izdatno gnojenje s fosforjem (močno gnojenje z dušikom pa bolezni ne zavira, ampak pospešuje), pomagajo tudi bolj redka in pozna setev odpornih kultivarjev ter večletno kolobarjenje.[5]

Sklici

  1. Tajnšek, 1988: 68.
  2. Križnar, 2012: 17.
  3. Križnar, 2012: 17.
  4. Tajnšek, 1988: 68.
  5. Križnar, 2012: 17.

Viri

  • Križnar, Maja (2012). Vpliv razkuževanja semena na gospodarsko pomembne lastnosti pšenice (Triticum aestivum L. var. aestivum) sorte 'Ficko' : Diplomsko delo. Ljubljana: Biotehniška fakulteta.
  • Tajnšek, Tone (1988). Pšenica. Zbirka: Knjižnica za pospeševanje kmetijstva, XIX/1989. Ljubljana: ČZP Kmečki glas.
license
cc-by-sa-3.0
copyright
Avtorji in uredniki Wikipedije
original
visit source
partner site
wikipedia SL

Žitna pepelovka: Brief Summary ( Spanish; Castilian )

provided by wikipedia SL

Žitna pepelovka, tudi pšenična pepelasta plesen (znanstveno ime Blumeria graminis), je gliva, ki prizadene vrste iz družine trav, med njimi tudi prava žita. Nekdaj je bila znana kot Erysiphe graminis DC., po anamorfni obliki pa tudi kot Oidium monilioides ali Oidium tritici.

license
cc-by-sa-3.0
copyright
Avtorji in uredniki Wikipedije
original
visit source
partner site
wikipedia SL

Gräsmjöldagg ( Swedish )

provided by wikipedia SV

Gräsmjöldagg (Blumeria graminis) är en svampart[7] som först beskrevs av Augustin Pyrame de Candolle, och fick sitt nu gällande namn av Speer 1975. Gräsmjöldagg ingår i släktet Blumeria och familjen Erysiphaceae.[8][9][10] Arten är reproducerande i Sverige.[10] Inga underarter finns listade i Catalogue of Life.[8]

Svampen är en vanlig skadegörare i stråsädsodling[11].

Källor

  1. ^ [a b] ”CABI databases”. http://www.speciesfungorum.org. Läst 24 januari 2013.
  2. ^ Trevis. (1853) , In: Spighe Paglie 1:22
  3. ^ Fr. (1829) , In: Syst. mycol. (Lundae) 3(1):242
  4. ^ Willdenow (1824) , In: Willd., Sp. pl., Edn 4 6(1):121
  5. ^ Nees (1816) , In: Syst. Pilze (Würzburg):53
  6. ^ de Candolle & Lamarck (1815) , In: Fl. franç., Edn 3 (Paris) 6:106
  7. ^ Speer (1975) , In: Sydowia 27(21–26):2
  8. ^ [a b] Bisby F.A., Roskov Y.R., Orrell T.M., Nicolson D., Paglinawan L.E., Bailly N., Kirk P.M., Bourgoin T., Baillargeon G., Ouvrard D. (red.) (9 april 2011). ”Species 2000 & ITIS Catalogue of Life: 2011 Annual Checklist.”. Species 2000: Reading, UK. http://www.catalogueoflife.org/annual-checklist/2011/search/all/key/blumeria+graminis/match/1. Läst 24 september 2012.
  9. ^ Species Fungorum. Kirk P.M., 2010-11-23
  10. ^ [a b] Dyntaxa Gräsmjöldagg
  11. ^ ”Växtskyddsinfo. Mjöldagg vete”. Jordbruksverket. http://www.jordbruksverket.se/etjanster/etjanster/odling/vaxtskyddsinfo.4.35974d0d12179bec28580002425.html. Läst 7 december 2016.
license
cc-by-sa-3.0
copyright
Wikipedia författare och redaktörer
original
visit source
partner site
wikipedia SV

Gräsmjöldagg: Brief Summary ( Swedish )

provided by wikipedia SV

Gräsmjöldagg (Blumeria graminis) är en svampart som först beskrevs av Augustin Pyrame de Candolle, och fick sitt nu gällande namn av Speer 1975. Gräsmjöldagg ingår i släktet Blumeria och familjen Erysiphaceae. Arten är reproducerande i Sverige. Inga underarter finns listade i Catalogue of Life.

Svampen är en vanlig skadegörare i stråsädsodling.

license
cc-by-sa-3.0
copyright
Wikipedia författare och redaktörer
original
visit source
partner site
wikipedia SV

禾本科布氏白粉菌 ( Chinese )

provided by wikipedia 中文维基百科
二名法 Blumeria graminis

禾本科布氏白粉菌学名Blumeria graminis)是属于白粉菌目白粉菌科布氏白粉菌属的一种真菌寄生禾本科植物上。该种分布于全世界。[1]

参考文献

  1. ^ 中国科学院中国孢子植物志编辑委员会. 禾本科布氏白粉菌. 中国真菌志(第一卷)白粉菌目.[永久失效連結]
小作品圖示这是一篇與真菌類相關的小作品。你可以通过编辑或修订扩充其内容。
 title=
license
cc-by-sa-3.0
copyright
维基百科作者和编辑

禾本科布氏白粉菌: Brief Summary ( Chinese )

provided by wikipedia 中文维基百科

禾本科布氏白粉菌(学名:Blumeria graminis)是属于白粉菌目白粉菌科布氏白粉菌属的一种真菌寄生禾本科植物上。该种分布于全世界。

license
cc-by-sa-3.0
copyright
维基百科作者和编辑