dcsimg
Image of Turtlegrass
Creatures » » Plants » » Dicotyledons » » Tape Grass Family »

Turtlegrass

Thalassia testudinum Banks & Sol. ex K. D. Koenig

Comments

provided by eFloras
Thalassia testudinum is possibly the most important marine spermatophyte along the coasts of the Caribbean and Gulf of Mexico (C. den Hartog 1970). The species grows from the low-water mark to nearly 10 m depth in very clear water. Establishment occurs on a wide variety of substrates, including organic matter, rocky matter, coral sand, and dead reef-platforms. Once the species is established, the substrate type becomes less important, especially in areas of low current. Dead leaves and rhizomes accumulate among the erect living leaves for considerable periods of time. The beds are important not only in substrate development but also in substrate stabilization. Massive amounts of substrate are lost in areas without turtle-grass colonies during hurricanes, but only minimal loss occurs in turtle-grass beds. Substrate loss is lessened by roots and rhizomes binding the substrate, as well as by the leaves lowering water velocity.

Posidonia oceanica (Linnaeus) Delile was included in the Texas flora (D. S. Correll and M. C. Johnston 1970; D. S. Correll and H. B. Correll 1972) because of specimens washed ashore along the Gulf of Mexico. The specimens were later determined to be Thalassia testudinum, based upon comparative growth studies and upon flavonoid chemistry profiles (C. McMillan et al. 1975).

license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of North America Vol. 22 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of North America @ eFloras.org
editor
Flora of North America Editorial Committee
project
eFloras.org
original
visit source
partner site
eFloras

Description

provided by eFloras
Rhizomes elongate, 3--6 mm thick. Leaves 10--60 cm ´ 0.4--1.2 cmm, margins entire proximally, minutely serrulate near apex; veins 9--15. Inflorescences: staminate inflorescences 1--3-flowered; peduncles 3--7 cm; margins of spathes connate on 1 side; pistillate inflorescences 1-flowered; peduncles 3--4 cm; spathes connate on both sides. Flowers: staminate flowers: pedicels 1.2--2.5 cm; stamens 9; pistillate flowers nearly sessile, styles 7--8. Fruits bright green to yellow-green or red, 1.5--2.5 cm diam., dehiscing in 5--8 valves; beak 4--7 mm.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of North America Vol. 22 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of North America @ eFloras.org
editor
Flora of North America Editorial Committee
project
eFloras.org
original
visit source
partner site
eFloras

Distribution

provided by eFloras
Fla., La., Tex.; Mexico; West Indies; Central America; South America (Colombia).
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of North America Vol. 22 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of North America @ eFloras.org
editor
Flora of North America Editorial Committee
project
eFloras.org
original
visit source
partner site
eFloras

Flowering/Fruiting

provided by eFloras
Flowering spring--summer.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of North America Vol. 22 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of North America @ eFloras.org
editor
Flora of North America Editorial Committee
project
eFloras.org
original
visit source
partner site
eFloras

Habitat

provided by eFloras
Ocean floor consisting of organic matter, rock matter, coral sand, or dead reefs; -10--0m.
license
cc-by-nc-sa-3.0
copyright
Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110 USA
bibliographic citation
Flora of North America Vol. 22 in eFloras.org, Missouri Botanical Garden. Accessed Nov 12, 2008.
source
Flora of North America @ eFloras.org
editor
Flora of North America Editorial Committee
project
eFloras.org
original
visit source
partner site
eFloras

Conservation Status

provided by EOL authors
Although the IUCN lists the conservation status of Turtle Grass as "Not Evaluated", there are significant conservation issues known to be associated with this marine plant. Notably the Manatee and other marine fauna are dependent on relationships with Turtle Grass, and correspondingly a number of protected areas have been established within the range of the Turtle Grass species. As an example, The Chetumal Bay Manatee Sanctuary is home to one of the largest remaining populations of Mexican Caribbean manatees, approximately 150 to 200 individuals, an animal that early Spanish explorers thought were mermaids. The sanctuary is situated in Chetumal Bay a national protected area of the Quintana Roo province of Mexico. The bay is a mixture of terrestrial and aquatic environments creating a landscape of exceptional beauty. The protected area also harbours other threatened and endangered species such as crocodiles (Crocodylus moreleti), the river white turtle (Dermatemys mawii) and jaguar (Pantera onca).
license
cc-by-nc
original
visit source
partner site
EOL authors

Anthropogenic impacts on Thalassia testudinum Banks ex König

provided by EOL authors
Many large-scales declines of seagrass meadows, affecting several different species in a wide geographical range, have been reported in recent decades (8); in more than 70% of the cases, human-induced disturbances have been held responsible for them (8, 21). Thalassia testudinum, in particular, is a species with a well-documented history of large die-offs and local declines (2, 12, 14, 17). Human-related changes in nutrient levels, salinity, composition of the biological community and climate have been identified as sources (or potential sources) of disturbance for this species. Changes in nutrient levels: eutrophication. Population growth and the massive use of fertilizers in agriculture have led to a generalized exponential increase in nutrient inputs to the coastal zones (8), which is most likely the main cause of seagrass decline worldwide (8). The most common mechanism for seagrass decline under eutrophic conditions is light reduction through stimulation of epiphytes, macroalgae and phytoplankton overgrowth (1, 7), although direct physiological responses such as ammonium toxicity may also contribute (1). Specifically, seagrass leaves are often densely covered by epiphytic algae which can suppress seagrass productivity through the development of a thick coat as a result of nutrient enrichment (6, 7, 8); it has been proposed as a major mechanism for declines of seagrass meadows, and the importance of this factor has been experimentally proved for Th. testudinum (6, 7). However, it seems that the net effect of epiphytes on seagrass growth depends on a complex variety of ecological factors (7, 8). In a mesocosm experiment designed to test the effects of nutrient addition on the interactions among grazers, epiphytes, and Th. testudinum, it was shown that those effects depended critically on the intensity of grazing: in the presence of grazers, the turtle grass tended to produce a greater biomass in the tanks with higher nutrient load, but when grazers were absent, the direction of the effect was reversed, and plants with nutrients added grew less than the control plants (7). Obviously, the control exerted by nutrient loads on this species’ productivity can led to shifts on the community composition and even to drastic alterations in seagrass beds dominance (1). The occurrence of those shifts has been experimentally demonstrated in Florida bay, where some areas previously dominated by Th. testudinum were intentionally fertilized with bird guano for eight years. For the first two years, T. testudinum production was positively affected by the nutrient enrichment, but gradually Halodule wrightii, normally an early-successional species in subtropical habitats, colonized the beds, and by the end of the study accounted for 97% of the aboveground seagrass biomass (1, 5). This shift in species dominance persisted at least eight years after nutrients were no longer added, suggesting that once an area has been fertilized, the system can be resistant to change (1). The importance of considering watershed nutrient loads rather than water-column nutrient concentrations in assessing enriched conditions for Th. testudinum meadows (1) was shown in Sarasota Bay, Florida (24). There, the biomass and productivity of this species were negatively correlated with watershed N loads but not with water-column nutrient concentrations as assessed by routine monitoring programs (24). It demonstrates that the search for reliable early indicators of nutrient overenriched seagrass meadows is an urgent necessity in order to provide an effective management of these ecosystems (1); direct measures of water-column nutrients are generally ineffective, since in early phases of eutrophication the nutrients are rapidly taken up by plants, adsorbed to particulate sediments, or otherwise removed from the water (1). Changes in salinity. The role of human-induced changes in salinity as a possible cause of seagrass losses is not well understood (8). Some studies suggest that Th. testudinum meadows do not show an inmediate response to increased salinity; for example, a turtle grass meadow remained unaffected after more than six months exposure to the direct discharge of brine from a desalination plant (22). However, decreased freshwater inputs due to human activities have been proposed as a triggering factor for the most important die-off of Th. testudinum known to date, which occurred in Florida Bay in 1987 (17). About a third of the dense seagrass beds of western Florida were impacted over a period of just a year; 4,000 hectares were denuded and an additional 23,000 hectares were affected to a lesser degree (2, 17). This die-off was probably the result of complex processes caused by an interaction of several factors (1), including eutrophication, enhanced pathogen virulence and elevated water temperatures (1, 12, 14, 16), but several authors indicate that increased salinity was a key factor in the initiation of this phenomenon (8, 12, 16, 27). Groundwater flow into the bay decreased as a result of extraction of water from the region’s aquifers (8, 27); canal construction, which diverted drainage water, further contributed to a diminished freshwater inflow (8, 27). This decrease in freshwater inflow supposedly caused a gradual transition in the original composition of the seagrass vegetation, resulting in dense monospecific meadows of Th. testudinum (27) that suffered a sudden decline, probably as a consequence of sulfide self-poisoning and other effects (1, 8, 12, 16). Changes in composition of the biological community: invasive species. A recent literature review has revealed that at least 56 non-native species, primarily invertebrates and seaweeds, have been introduced to seagrass meadows all around the world, largely through shipping/boating activities and aquaculture (26). There is, however, few specific data about the effects of these invasions, particularly for seagrass community structure and function (26). Th. testudinum meadows have been locally colonized by the invasive green alga Caulerpa ollivieri Dostál, native from the Mediterranean Sea (26). To date, this alga has been reported from the Bahamas (11) and the Gulf of Mexico (9). A negative effect of C. ollivieri on Th. testudinum, by direct displacement, has been observed (11, 26). Eutrophication is considered a facilitating factor in the successful colonization of the meadows by C. ollivieri (11); in the locations were this invasive was recorded, Th. testudinum was covered by epiphytic algae, as typical under conditions of high nutrient loads, and C. ollivieri exhibited higher nutrient contents than native Caulerpa species, which was considered evidence for the role of sewage-derived nitrogen in its successful introduction (26). This proposition is consistent with the results of recent experiments in several different seagrass ecosystems, which confirmed that disturbance contributes to the invasibility of seagrass beds (26). Given the reduced knowledge about the role that introduced species, combined with nutrient pollution may play in global seagrass decline, more definitive studies and comprehensive surveys are required in this field (26). Climate change The global change in Earth’s systems and functioning which is currently taking place, mainly due to anthropogenic release of greenhouse gases into the atmosphere, is likely to alter to some degree most of the terrestrial and marine ecosystems. Seagrass meadows in general, and Th. testudinum populations in particular, may potentially be impacted by many factors related to climate change, including higher atmospheric concentration of CO2, higher temperatures, rising sea level, increase in the frequency and intensity of storms and increase in UV-B radiation (20). Rising levels of atmospheric CO2, and the consequent alterations in the CO2/HCO-3 equilibrium in marine water, is expected to have significant effects on seagrasses. Seagrass photosynthesis is frequently limited by the availability of dissolved inorganic carbon under natural conditions (20); it has been experimentally shown for Th. testudinum (3). This carbon limitation has been attributed to the thickness of the diffusion boundary layer surrounding leaf surfaces or to a relatively inefficient HCO-3 uptake system (20), factors which vary according to each species morphology and physiology (8). Differences among species in the ability to compete for carbon would be expected to lead to shifts in species abundances and distributions, but long-term experimental studies of seagrass community responses to carbon enrichment are lacking (20). In a similar way, increasing water temperature will directly affect seagrass metabolism, which may result in changes in patterns of species abundance and distribution (20). These direct effects will depend on the individual species’ thermal tolerances and their optimum temperatures for photosynthesis, respiration, and growth. Rising temperatures may also alter seagrasses through direct effects on flowering and seed germination (20); in Th. testudinum, flowering is apparently controlled by the water temperature (15), which implies that a phenological impact could be expected. As a consequence of global higher temperatures, which produce a thermal expansion of ocean water and an acceleration of polar ice cap melting (10, 20), sea level has been rising steadily along the 20th century (10). According to the IPCC 4th Assessment Report, the global average sea level rose about 3.1 mm/year over 1993 to 2003 (10); by the end of 21th century the projected level rise will go from 0.18 m to 0.59 m, depending on the emission scenarios (10), but the used model excludes future rapid dynamical changes in ice flow, which are likely to occur, resulting in even larger figures. The greatest direct impact of an increase in sea level will be an increase in the depth of water and the consequent reduction in available light to the bottom (20). A primary effect of increased water depth will be to alter the location of the maximum depth limit of plant growth, directly affecting seagrass distribution (20). Increased global temperatures are expected to increase the intensity and frequency of extreme weather events (4). A regime of increased storm disturbance may lead to a decrease in distribution of climax species like Th. testudinum and an increase in abundance of early colonizing and mid-successional species within the seagrass community (20). It is due to the fact that recolonization in seagrasses occurs primarily by means of horizontal rhizome growth and branching; in Th. testudinum the rates for both processes are slow [around 70 cm/year for horizontal rhizome growth, and a branching rate of 1 branch/1600 internodes (8)] compared with the growing rates showed by other smaller seagrasses (8). There is a general agreement that increases in the amount of UV-B radiation reaching the surface of the Earth will produce both mutagenic and physiological damage in plants, including seagrasses (20). For three seagrass species occurring in the Caribbean (Th. testudinum was not included in the study), it was shown that increased UV-B radiation negatively impacted their photosynthetic capacity (25). Under ozone depletion, increased UV-B radiation is most likely to affect tropical seagrass systems such as Th. testudinum meadows, where the greatest amount of direct UV light reaches the Earth’s surface (20).

Associations

provided by EOL staff

Seagrass beds provide food and shelter, both directly and indirectly, to many ecologically and economically important fish and shellfish species. Over 100 species of fishes and over 30 crustacean species are found in Florida Bay, including both permanent residents and temporary residents using seagrass habitat as a nursery ground, such as spotted seatrout, redfish, snook, tarpon, snappers, and grunts. Important shellfish species include pink shrimp from the Tortugas bank, blue crabs, and spiny lobsters. (Robblee 1991)

Kirsch et al. (2002) studied grazing by smaller herbivores (e.g. the bucktooth parrotfish Sparisoma radians) on Thalassia tedudinum in Hawk Channel, in the northern Florida Keys (USA). They found that that seagrass grazing varied greatly both spatially and seasonally but, on average, grazers consumed virtually all of the aboveground production at 2 of the 3 sites studied. When experiments were repeated in the summer of a second year at 6 sites, seagrass grazing again varied greatly among sites, but at 3 of the sites most of the daily production of seagrass shoots was consumed by small herbivorous fishes. These results suggest that while it is undoubtedly true that modern day grazing by manatees, turtles, and waterfowl on seagrass is reduced relative to historical levels due to declines in populations of these large grazers, small vertebrate grazers nevertheless consume a substantial fraction of seagrass production in the northern Florida Keys.

A variety of sea urchins may graze heavily on Thalassia testudinum, sometimes even overgrazing (i.e., grazing at a rate that exceeds the seagrass growth rate), which may dramatically reduce seagrass biomass, leading to a restructuring of the local ecosystem (Eklof et al. 2008 and references therein).

Tussenbroek and Brearley (1998) found a burrowing isopod, Limnoria simulata, in sheaths of Thalassia testudinum in the Puerto Morelos reef lagoon, Mexican Caribbean, and this isopod likely has this habit across the Caribbean (Tussenbroek and Brearley 1998).

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Comprehensive Description

provided by EOL staff

Turtle Grass (Thalassia testudinum) is an important seagrass found from Bermuda and southern Florida south to the Gulf of Mexico, the West Indies, Central America, and Venezuela. It can form very extensive beds in protected shallow waters that serve as both habitat and a food source for a tremendous diversity of organisms, among them sea turtles, which graze on T. testudinum and are the source of its common name. (Dineen 2001 and references therein)

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Conservation Status

provided by EOL staff

in 1987, a mass die-off of Thalassia testudinum began in Florida Bay (Robblee et al. 1991). Robblee et al. estimated that over 4,000 hectares of seagrass beds had been denuded and an additional 23,000 hectares were affected to a lesser degree. About a third of the dense seagrass beds of western Florida were impacted over a period of just a year. Until the 1980s, Florida Bay was widely viewed as a healthy and stable ecosystem, with clear water, lush seagrass beds, and highly productive fish and shrimp populations. By 1992, the ecosystem appeared to have changed from a clear water system, dominated by benthic primary production, to a turbid water system, with algae blooms and resuspended sediments in the water column. (Rudnick et al. 2005 and references therein)

A defining feature of Florida Bay is its shallow depth, which averages just one to two meters. Light sufficient to support photosynthesis can reach the sediment surface in almost all areas of the bay, resulting in dominance of seagrass beds as both a habitat and a source of primary production (i.e., capturing energy from the sun through photosynthesis). In some portions of the bay, salinity can rise rapidly during drought periods due to water loss from evaporation exceeding input from precipitation and freshwater inflow. Following observations of Florida Bay’s dramatic ecological changes in the 1980s, it was commonly assumed that a direct cause of these changes was a longterm increase in salinity, which in turn was caused by the diversion of freshwater away from Florida Bay via South Florida Water Management District canals. However, subsequent research has indicated that these ecological changes may not be attributable to a single cause. While decreased freshwater inflow and resultant increased salinity have been part of the problem, it appears that other human activities, as well as natural forces, may have also played a role. (Rudnick et al. 2005 and references therein) Duarte (2002) notes that the causes of this die-off continue to be debated, and may include, among others, increased anthropogenic (i.e., human-caused) nutrient loading, the effects of climatic changes involving a long time interval without hurricanes affecting the area also causing unusually low freshwater discharge, and the effects of the increased accumulation of detritus derived from loss of large grazers. Difficulties in experimenting at the appropriate scale of entire seagrass meadows to test these hypotheses have made it difficult to assess to what degree the decline was due to human or natural causes, or a combination of both. (Rudnick et al. 2005 and references therein)

Regardless of the cause of the mass-mortality event, once it was initiated, the ecology of Florida Bay changed. Continued seagrass mortality results in increased sediment resuspension and increased nutrient (nitrogen and phosphorus) release from sediments, stimulating phytoplankton growth in the water column. The presence of phytoplankton and suspended sediment results in decreased light penetration to seagrass beds. This decreased light can limit seagrass growth and sustain the feedback loop. Dynamics of this feedback loop are probably not independent of the salinity regime. Seagrass wasting disease, caused by a slime mold (Labyrinthula sp.) infection, is more common at salinities close to or greater than seawater than at low salinities. High salinity may have played a role in the initial seagrass mass mortality event, but more likely has served to promote seagrass re-infection since that event. Incidence of this disease may therefore be directly affected by water management actions. (Rudnick et al. 2005 and references therein)

On a global scale, seagrasses--marine flowering plants that include the widely distributed genera Zostera, Thalassia, and Posidonia--in general appear to be in trouble (Waycott et al. 2009). Seagrasses form some of the most productive ecosystems on earth, rivaling even crops of corn and sugar cane. Seagrass meadows provide ecosystem services such as supporting commercial fisheries worth as much as $3500 per hectare per year, subsistence fisheries that support entire communities, nutrient cycling, sediment stabilization, and globally significant sequestration of carbon. Seagrasses and the services they provide are threatened by the immediate impacts of coastal development and growing human populations as well as by the impacts of climate change and ecological degradation. Seagrass losses also disrupt important linkages between seagrass meadows and other habitats, and their ongoing decline is likely producing much broader and long-lasting impacts than the loss of the meadows themselves. (Waycott et al. 2009 and references therein)

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Development

provided by EOL staff

Under favorable conditions, Thalassia testudinum can grow several centimeters per day (Dineen 2001 and references therein).

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Distribution

provided by EOL staff

Thalassia testudinum is restricted to the Gulf of Mexico and the Caribbean and has been recorded from Bermuda (the other species in the genus, T. hemprichii, is widely distributed in the coastal waters of the Indian Ocean and the western Pacific) (Larkum et al. 2006).

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Ecology

provided by EOL staff

The widespread decline of seagrass, in particular Thalassia testudinum, in Florida Bay (Florida, U.S.A.) in 1987 was followed by a cascade of ecological effects. By 1992, frequent phytoplankton blooms began to appear in the central and western bay where none had been recorded previously. Negative impacts extended to higher trophic levels as well, including 100% mortality of some sponge species. Spiny lobster and pink shrimp catches at Tortugas Banks plunged in 1988 to their lowest levels in decades and game fish catch also declined. Algae blooms persist and the bloom ‘‘footprint’’ has expanded to include the eastern bay. (Madden et al. 2009 and references therein)

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Habitat

provided by EOL staff

Thalassia testudinum grows in shallow coastal waters that are protected from strong wave surge. In clearer water it can be found at greater depths than in murky water. (Dineen 2001 and references therein)

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Management

provided by EOL staff

Rudnick et al. (2005) emphasize that if the state of the seagrass community is to be used as a criterion to guide and assess the success of environmental restoration efforts, scientists and managers must specify the desirability of alternative states. Based on studies of historic changes of seagrass communities in Florida Bay and anecdotal information. it is likely that the Florida Bay of the 1970s and early 1980s, with lush T. testudinum and clear water, was probably a temporary and atypical condition. From an ecological perspective, restoration should probably strive for a more diverse seagrass community with lower T. testudinum density and biomass than during that anomalous period. (Rudnick et al. 2005 and references therein)

If efforts to restore the Everglades are successful, patterns of freshwater flow toward more natural patterns will drive Florida Bay’s seagrass community and trophic web toward its pre-drainage condition. Decreased salinity caused by increasing freshwater flow would likely have a direct effect on seagrass communities through physiological mechanisms, resulting in greater spatial heterogeneity of seagrass beds, a decrease in the dominance of T. testudinum, and an increase in coverage by other seagrass species. Decreased salinity would also likely decrease the infection of T. testudinum by the slime mold Labyrinthula. Light availability depends on phytoplankton growth and sediment resuspension, which in turn depend on nutrient availability, grazing, and stabilization of sediments by seagrass beds. (Rudnick et al. 2005)

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Distribution ( Spanish; Castilian )

provided by INBio
Distribucion en Costa Rica: Se encuentra en la costa Atlántica de Puerto Limón hasta Punta Morales.
Distribucion General: Se distribuye desde el suerte de Estados Unidos (Florida),Venezuela, Las Antillas y Bermudas.
license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Garrett Crow
editor
Mery Ocampo
partner site
INBio

Diagnostic Description ( Spanish; Castilian )

provided by INBio
Localidad del tipo: Antigua
Depositario del tipo: BM
Recolector del tipo: Smeathmann (s.n)
license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Garrett Crow
editor
Mery Ocampo
partner site
INBio

Diagnostic Description ( Spanish; Castilian )

provided by INBio
Hierbas marinas sumergidas perennes. Plantas dioicas. Tallos cortos nacidos a lo largo de un tallo rizomatoso inmerso en el substrato. Hojas de 2"6, dísticas en rosetones basales, sésiles, alrededor de 10 a 70 por 0.4 a 1.2 cm, como cintas, con 9 a 17 venas longitudinales; vaina basal pálida presente.Inflorescencias sobre un pedúnculo de 3 a 7.5 cm, de una flores subtendida por 2 brácteas unidas, que forman una espata. Flores estaminadas con pedicelo de 1.2 a 2.5 cm; 3 tépalos; de 3 a 13 estambres.Flores pistiladas sésiles o subsésiles; ovario elongado, ínfero, con un hipanto; estilos de 6 a 8, bífidos.Frutos, una cápsula de alrededor de 1.5 a 2 por 2 a 2.5 cm, elipsoide a globosa, suculenta, ásperamente equinada, con dehiscencia irregular. 3 semillas (rara vez 1, 2 ó 6).Las hojas, asemejan cintas, muy largas, de Thalassia testudinum son únicas dentro de las angiospermas marinas de Costa Rica.
license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Garrett Crow
editor
Mery Ocampo
partner site
INBio

Associations ( Spanish; Castilian )

provided by INBio
T. testudinum es la especie marina más importante, ecológica y económicamente. Es el mejor recurso alimenticio para la tortuga marina verde y el manatí, lo mismo como para numerosos peces e invertebrados, y también juega un rol en la estabilización y protección del contorno de la costa. En Puerto Vargas, crece en estrecha asociación con Halodule y Syringodium (Cymodoceaceae).
license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Garrett Crow
editor
Mery Ocampo
partner site
INBio

Morphology ( Spanish; Castilian )

provided by INBio
Hierba.
license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Garrett Crow
editor
Mery Ocampo
partner site
INBio

Habitat ( Spanish; Castilian )

provided by INBio
Arrecifes y bahías, usualmente en el substrato arenoso, 0 a 5 a 10 m de profundidad.
license
cc-by-nc-sa-3.0
copyright
INBio, Costa Rica
author
Garrett Crow
editor
Mery Ocampo
partner site
INBio

Comprehensive Description

provided by North American Flora
Thalassia testudinum Konig, Ann. Bot. K. & S. 2: 96. 1805
Thalassia vitrariorum Pers. Syn. PI. 2 : 563. 1807.
Base of the short stem covered by the remains of old leaves; leaf -blades linear-strapshaped, 1-3 dm. long, 7-10 mm. wide, glabrous, obtuse, rounded at the apex, witheringpersistent ; spathe 2-cleft, its lobes elliptic, papillose-dentate on the margins ; perianthlobes in both kinds of flowers oblong, rounded above, 10-12 mm. long ; anthers 8 mm. long, linear ; stigmas 9-12, linear-filiform, pilose, grooved on the inside, about 1 cm. long ; fruit (young) elliptic-fusiform, short-stalked and short-beaked, densely mammillate.
Type locality : Sea near the shores of Antigua [West Indies] .
Distribution: Coasts of Peninsular Florida, Bermuda, Bahamas, Antilles, and Venezuela.
license
cc-by-nc-sa-3.0
bibliographic citation
Percy Wilson, Per Axel Rydberg, Norman Taylor, Nathaniel Lord Britton, John Kunkel Small, George Valentine Nash. 1909. PANDANALES-POALES; TYPHACEAE, SPARGANACEAE, ELODEACEAE, HYDROCHARITACEAE, ZANNICHELLIACEAE, ZOSTERACEAE, CYMODOCEACEAE, NAIADACEAE, LILAEACEAE, SCHEUCHZERIACEAE, ALISMACEAE, BUTOMACEAE, POACEAE (pars). North American flora. vol 17(1). New York Botanical Garden, New York, NY
original
visit source
partner site
North American Flora

Thalassia testudinum ( German )

provided by wikipedia DE

Thalassia testudinum ist eine von zwei Pflanzenarten aus der Gattung Thalassia. Sie kommt im Golf von Mexiko und in der Karibik vor.

Beschreibung

Die Rhizome sind verlängert und haben einen Durchmesser von 3 bis 6 Millimetern. Die Blätter messen 10 bis 60 × 0,4 bis 1,2 Zentimeter. Sie sind ganzrandig, nur gegen die Spitze hin ist der Rand gesägt. Blattadern sind 9 bis 15 vorhanden. Der männliche Blütenstand ist ein- bis dreiblütig. Die Blütenstandsachse ist 3 bis 7 Zentimeter lang. Die Ränder der Spathas sind auf einer Seite verwachsen. Der weibliche Blütenstand ist einblütig. Die Blütenstandsachse ist 3 bis 4 Zentimeter lang. Die Spathas sind auf beiden Seiten verwachsen. Die Stiele der männlichen Blüten sind 1,2 bis 2,5 Zentimeter lang. Es sind 9 Staubblätter vorhanden. Die weiblichen Blüten sind fast sitzend. Sie besitzen 7 oder 8 Griffel. Die Früchte sind hellgrün bis gelb-grün oder rot. Sie haben einen Durchmesser von 1,5 bis 2,5 Zentimetern und 5 bis 8 sich öffnende Fruchtklappen. Der Schnabel ist 4 bis 7 Millimeter lang.

Die Blütezeit reicht vom Frühling bis zum Sommer.

Die Chromosomenzahl beträgt 2n = 18.[1]

Verbreitung

Thalassia testudinum kommt von den USA (Florida, Alabama, Louisiana und Texas) und Mexiko über Mittelamerika und die Westindischen Inseln bis Südamerika (Kolumbien, Venezuela) vor.[2] Die Art wächst auf Meeresgrund aus organischem Material, felsigem Material, Korallensand oder toten Korallenriffen von Meereshöhe bis in 10 Meter Tiefe in sehr klarem Wasser.

Ökologie

Die Art stellt evtl. eine der wichtigsten marinen Samenpflanzen an den Küsten von Karibik und Golf von Mexiko dar, beispielsweise zur Substratstabilisierung. So geht in Bereichen mit Beständen von Thalassia testudinum während eines Hurrikans nur sehr wenig Substrat verloren, verglichen mit Bereichen ohne die Art. Dies wird durch die Wurzeln und Rhizome erreicht, welche das Substrat festhalten, sowie durch die Blätter, welche die Strömungsgeschwindigkeit des Wassers reduzieren.

Systematik

Thalassia testudinum wurde 1805 in einem Artikel von Charles König erstbeschrieben[3], der den Namen dem Botaniker Joseph Banks zuschrieb, weil seine Beschreibung auf Herbarmaterial und unveröffentlichte Manuskripte von Banks beruhte.

Literatur

  • Robert R. Haynes: Thalassia testudinum. In: Flora of North America Vol. 22 Hydrocharitaceae. (online)

Einzelnachweise

  1. Tropicos. [1]
  2. Rafaël Govaerts (Hrsg.): Thalassia - World Checklist of Selected Plant Families des Royal Botanic Gardens, Kew. Zuletzt eingesehen am 20. Juni 2018.
  3. Originalbeschreibung in Annals of Botany
 title=
license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Thalassia testudinum: Brief Summary ( German )

provided by wikipedia DE

Thalassia testudinum ist eine von zwei Pflanzenarten aus der Gattung Thalassia. Sie kommt im Golf von Mexiko und in der Karibik vor.

license
cc-by-sa-3.0
copyright
Autoren und Herausgeber von Wikipedia
original
visit source
partner site
wikipedia DE

Thalassia testudinum

provided by wikipedia EN

Thalassia testudinum, commonly known as turtlegrass,[3] is a species of marine seagrass. It forms meadows in shallow sandy or muddy locations in the Caribbean Sea and the Gulf of Mexico.[4] Turtle grass and other seagrasses form meadows which are important habitats and feeding grounds. The grass is eaten by turtles and herbivorous fish, supports many epiphytes, and provides habitat for juvenile fish and many invertebrate taxa.

Description

Thalassia testudinum is a perennial grass growing from a long, jointed rhizome. The rhizome is buried in the substrate 5 to 10 cm (2 to 4 in) deep, exceptionally down to 25 centimetres (9.8 in). Some nodes are leafless but others bear a tuft of several erect, linear leaf blades.[5][6] These are up to 30 centimetres (12 in) long and 2 cm (0.8 in) wide and have rounded tips. The flowers grow on short stalks in the axils of the leaves and are greenish-white, sometimes tinged pink, and are followed by seed pods.[7]

Distribution and habitat

Thalassia testudinum up close
Seagrass bed with dense Thalassia testudinum and immature queen conch)
Thalassia testudinum with sponge and anemone
Thalassia testudinum nearby Archer Key, FL

Turtle grass grows in meadows in calm shallow waters throughout the Caribbean Sea and the Gulf of Mexico, and as far north as Cape Canaveral in Florida. Extensive meadows can be formed on muddy sand, and coarse sandy and clayey seabeds, especially those with a calcareous content. This grass favours high-salinity waters with low turbidity, such as calm lagoons. It cannot grow in fresh water but some growth is possible at a salinity of 10 parts per thousand. The plant's preferred salinity range is 25 to 38.5 parts per thousand with a temperature range of 20 to 30 °C (68 to 86 °F). It is found from the low-tide mark down to depths of 30 metres (98 ft), depending on water clarity. It often grows in meadows with other seagrasses where it is the climax species.[6]

Its temporal range spans from the Middle Eocene to present.[8]

Reproduction

Turtle grass can reproduce both through vegetative and sexual reproduction. The main propagation method is by extension of the underground rhizome, or stem. This increase in rhizome length results in asexual ramets, or clonal colonies which are genetic replicates of the parent plant. Although asexual propagation results in an increase in the size of the turtle grass bed, extensive asexual reproduction limits genetic diversity and can put the meadow at severe risk if there is a disease outbreak.[6] It has been found that where plants have been damaged mechanically, such as by the propellers of boats, the cut ends of rhizomes are unable to grow and holes may develop in the turtle grass meadow.[5]

Turtle grass can also sexually reproduce through the production of underwater flowers and hydrophily. Turtle grass is dioecious, which means that there are separate male and female plants, each which produce an imperfect flower containing only one sex. Sexual reproduction takes place from April to July depending on location, though flowering has been observed during warm winters in Tampa Bay, Florida.[9][10][11] The small flowers are each borne by a peduncle. Female plants typically grow one green flower, while males often produce three to five pink or white flowers.[12][13][14] At night when male flowers are fully mature, they release mucilaginous pollen into the water column.[15][16][17] The following morning, female flowers open.

There are two methods of pollination: hydrophily and biotic pollination. In hydrophilic pollination, the pollen grains are carried through the water column by tides or currents and deposited upon an open pistillate flower. Underwater video cameras have more recently revealed crustaceans, polychaetes, and amphipods swimming towards open male flowers.[17][15][16][18] These creatures were attracted to the seagrass's nutritious mucilage—a carbohydrate-rich substance that houses pollen. As the invertebrates feed on the mucilage, excess pollen grains stick to their bodies. They move from flower to flower, feeding and spreading the pollen from male to female.

Seeds begin to develop in about 2–4 weeks if fertilization occurred.[6] Female turtle grass fruits develop into green capsule about 20–25 mm in diameter and can include 1-6 small seeds.[16][12] After about 8 weeks of growth, the fruit undergoes dehiscence (botany), which releases neutrally buoyant seeds into the water column.[14][12][10][6] If an event occurs producing significant water turbulence, an immature fruit may break off from the peduncle. This buoyant fruit acts as a transportation vessel as it continues to develop. The fruit will moved around by wind, currents, and tides until it eventually splits open to release the negatively buoyant seedlings into a new area. If the new location has favorable environmental conditions, the seedling will begin to grow. This is one way viviparous seedlings can start new patches of seagrass.[1]

Ecology

Turtle grass and other seagrasses form meadows which are important habitats and feeding grounds. Associated seagrass species include Halophila engelmannii and Syringodium filiforme. Many epiphytes grow on the grasses, and algae, diatoms and bacterial films cover the surface of the leaf blades. The grass is eaten by turtles, herbivorous parrotfish, surgeonfish, and sea urchins, while the leaf surface films are a food source for many small invertebrates.[6] Decaying turtle grass leaves are responsible for the majority of detritus in meadow areas. This grass is subject to periodic dieback episodes in the Florida Bay area. One such episode in 1987 killed off a large proportion of the plants and the resulting increased sedimentation and greater growth of epiphytes on the remaining plants caused a secondary dieback event. The areas affected have since been reseeded and planted with rhizomes and have recovered. In general, the population of this grass is stable.[1]

Rhizomatous green algae in the genus Caulerpa often live among the grasses and many animal make seagrass meadows their home. These include bivalves and other molluscs, polychaete worms, amphipods, juvenile fish (which hide among the leaf blades), sea urchin, crabs, and caridean shrimps.[6]

Relationship to humans

Along with Thalassia hemprichii (which shares its common name with Thalassia testudinum), turtle grass makes its way into the aquarium trade and it may be cropped at 12 in/30 cm.[19]

References

  1. ^ a b c Short, F.T.; Carruthers, T.J.R.; van Tussenbroek, B.; Zieman, J. (2010). "Thalassia testudinum". IUCN Red List of Threatened Species. 2010: e.T173346A6995927. doi:10.2305/IUCN.UK.2010-3.RLTS.T173346A6995927.en. Retrieved 30 June 2021.
  2. ^ Guiry, Michael D. (2012). Guiry MD, Guiry GM (eds.). "Thalassia testudinum Banks ex König, 1805". AlgaeBase. National University of Ireland, Galway. World Register of Marine Species. Retrieved 2012-11-07.
  3. ^ USDA, NRCS (n.d.). "Thalassia testudinum". The PLANTS Database (plants.usda.gov). Greensboro, North Carolina: National Plant Data Team. Retrieved 9 December 2015.
  4. ^ Guiry, M. D.; Guiry, G. M. (2012). "Thalassia testudinum Banks ex König". AlgaeBase. Retrieved 2012-11-08.
  5. ^ a b Colin, Patrick L. (1978). Marine Invertebrates and Plants of the Living Reef. T.F.H. Publications. pp. 474–475. ISBN 0-86622-875-6.
  6. ^ a b c d e f g Dineen, J. (2001-07-25). "Thalassia testudinum (Turtle grass)". Smithsonian Marine Station at Fort Pierce. Retrieved 2012-11-07.
  7. ^ "Turtle-grass (Thalassia testudinum)". Interactive Guide to Caribbean Diving. Marine Species Identification Portal. Retrieved 2012-11-08.
  8. ^ den Hartog, C. (2005). "Taxonomy and biogeorgraphy of seagrasses". In Larkum, Anthony W.D.; Duarte, Carlos; Orth, Robert J. (eds.). Seagrasses: Biology, Ecology and Conservation. Springer-Verlag New York, LLC. ISBN 978-1-4020-2942-4.
  9. ^ Zieman JC. 1975. Seasonal variation of turtle grass, Thalassia testudinum Konig, with reference to temperature and salinity effects. Aquatic Botany. 1: 107-123.
  10. ^ a b Moffler MD, Durako MJ and Grey WF. 1981. Observations on the reproductive ecology of Thalassia testudinum (Hydrocharitaceae). Aquatic Botany. 10: 183-187.
  11. ^ Phillips RC, McMillan C, Bridges KW. 1981. Phenology and reproductive physiology of Thalassia testudinum from the western tropical Atlantic. Aquatic Botany. 11: 263-277.
  12. ^ a b c Orpurt PA and Boral, LL. 1964. The flowers, fruits and seeds of Thalassia testudinum Konig. Bulletin of Marine Science. 14: 296-302.
  13. ^ Tomlinson P.B. 1969. On the morphology and anatomy of turtle grass, Thalassia testudinum (Hydrocharitaceae). III. Floral morphology and anatomy. Bulletin of Marine Science. 19: 286-305.
  14. ^ a b Darnell and Dunton (2016). "Reproductive phenology of the subtropical Thalassia testudinum (turtle grass) and Halodule wrightii (shoal grass) in the northwest Gulf of Mexico". Botanica Marina. 59 (6): 473–483.
  15. ^ a b van Tussenbroek, Brigitta I.; Wong, J. G. Ricardo; Márquez-Guzman, Judith (2008-02-07). "Synchronized anthesis and predation on pollen in the marine angiosperm Thalassia testudinum (Hydrocharitaceae)". Marine Ecology Progress Series. 354: 119–124. doi:10.3354/meps07212.
  16. ^ a b c van Tussenbroek, Brigitta I.; Villamil, Nora; Márquez-Guzmán, Judith; Wong, Ricardo; Monroy-Velázquez, L. Verónica; Solis-Weiss, Vivianne (2016). "Experimental evidence of pollination in marine flowers by invertebrate fauna". Nature Communications. 7 (1): 12980. doi:10.1038/ncomms12980. PMC 5056424.
  17. ^ a b van Tussenbroek, Brigitta I.; Monroy-Velazquez, L. Verónica; Solis-Weiss, Vivianne (2012-11-26). "Meso-fauna foraging on seagrass pollen may serve in marine zoophilous pollination". Marine Ecology Progress Series. 469: 1–6. doi:10.3354/meps10072.
  18. ^ "Scientists Discover an Underwater Pollinator | Hakai Magazine". Hakai Magazine. Retrieved 2017-02-01.
  19. ^ (2012): Beautiful Seagrasses – Keeping True Flowering Plants in Your Marine Aquarium|Reefland.com. [1]. In: Reefland.com. [2]

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Thalassia testudinum: Brief Summary

provided by wikipedia EN

Thalassia testudinum, commonly known as turtlegrass, is a species of marine seagrass. It forms meadows in shallow sandy or muddy locations in the Caribbean Sea and the Gulf of Mexico. Turtle grass and other seagrasses form meadows which are important habitats and feeding grounds. The grass is eaten by turtles and herbivorous fish, supports many epiphytes, and provides habitat for juvenile fish and many invertebrate taxa.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Thalassia testudinum ( Spanish; Castilian )

provided by wikipedia ES

Thalassia testudinum, conocido comúnmente como hierba de tortuga [¿comúnmente dónde?], es una especie de planta que habita en el Caribe. Es un habitante del litoral y se caracteriza por formar praderas en lugares arenosos o fangosos poco profundos y con iluminación intensa.[3][4][5][6][7]​ Las praderas de Thalassia testudinum constituyen el hábitat de una gran diversidad de invertebrados tales como moluscos y crustáceos,[8]​ además de constituir parte fundamental de la dieta de la tortuga verde (Chelonia mydas) y del manatí (Trichechus manatus).[9]

Descripción

Thalassia testudinum está conformada por un largo rizoma de crecimiento el cual pueden estar enterrado hasta a unos 25 centímetros de profundidad en el sustrato, pero habitualmente se encuentra a unos 5 a 10 cm por debajo de la superficie de hierba perenne. En algunos puntos del rizoma se producen nodos de donde salen las hojas, de dichos nodos puede salir una sola hoja presentar un racimo de varias hojas, las cuales son lineales y rectas como cintas.[10][11]​ Dichas hojas puedean alcanzar los 30 centímetros de largo y 2 cm de ancho y tienen puntas redondeadas. Las flores crecen en tallos cortos en las axilas de las hojas y son de color blanco verdoso, en ocasiones teñidas de rosa, y son seguidas por las vainas de semillas.[12]

Distribución

La hierba tortuga presenta una amplia área de distribución por todo el Mar Caribe habiéndosele señalado para México el Golfo de México,[13]​ hacia el norte del estado de la FloridaEstados Unidos[14][15][16]​ y las islas Bermudas[14]​ En centro América se tiene reporte para Belice[17][18][16]​ para las islas del Caribe se ha señalado en las Bahamas[19]​a las costas caribeñas de sur América se le ha señalado para Colombia[16][20]​ y Venezuela[21][8][14]

Hábitat

Thalassia testudinum habita en praderas en aguas tranquilas de arena gruesa fangosa, grueso y fondos marinos arcillosos, especialmente aquellos con un contenido calcáreo. Esta hierba la favorece aguas de alta salinidad con baja turbidez como las lagunas tranquilas. No puede crecer en agua dulce, pero puede tolerar aguas con una salinidad de 10 partes por mil. El intervalo preferido de la planta es de 25 a 38,5 partes por mil con un rango de temperatura de 20 a 30 ° C. Se encuentra desde línea de baja mar a profundidades de 30 metros, dependiendo de la claridad del agua. Con frecuencia crece en los praderas de pastos marinos con otras especies en los que es ella es la especie dominate.[3][4][7][11]

Reproducción

La Hierba tortuga presenta reproducción asexual y sexual. El principal método de propagación asexual es por aumento de la longitud de los rizomas. Esto tiene lugar principalmente en primavera y principios de verano, pero puede ocurrir en cualquier momento del año y los resultados en un aumento en el tamaño del área de la comunidad.[11]​ Se ha descubierto que donde las plantas han sido dañados mecánicamente, como puede ser mediante la hélices de los barcos, los extremos cortados de los rizomas son incapaces de crecer lo que ocasiona espacios vacíos en el área superficial de la comunidad.[10]

Inusualmente para el medio marino, la hierba de tortuga es una planta con flores. En la primavera y principios del verano, muchas plantas de la hierba de tortuga producen pequeñas flores en la base de las hojas. Las flores masculinas y femeninas crecen en plantas separadas. Las frutas se desarrollan en un período dos a cuatro semanas, y se desprenden alejándose por acción del oleaje y corrientes esta pueden flotar cerca de ocho semanas.[11]​ Las semillas son vivíparos[22]​ y puede iniciar nuevos parches de pastos marinos aunque se cree que el principal método de reproducción de esta planta es asexual.[11]

Ecología

 src=
Densa pradera de Thalassia testudinum en playa El Mangillo, Isla de Margarita estado Nueva Esparta - Venezuela

Thalassia testudinum y otros pastos marinos forman praderas que son hábitats importantes de alimentación. Especies marinas asociadas incluyen Halophila engelmannii y Syringodium filiforme. Muchos epifitas crecen en los pastos, y algas, diatomeas así como películas bacterianas cubren la superficie de las láminas de las hojas. La hierba es comida para las tortugas, peces loro herbívoro, pez cirujano y erizos de mar, mientras que las capas de la superficie de las hojas son una fuente de alimento para muchos invertebrados pequeños.[11]​ La descomposición hojas de hierba de tortuga es la responsable de la mayor parte del detritus en zonas de las pradera. Esta hierba está sujeto a episodios periódicos de muerte regresiva, como ocurrió en el área de Florida Bay. Uno de tales episodio en 1987 mató a una gran proporción de las plantas y el aumento de la sedimentación resultante y un mayor crecimiento de epifitas en las plantas restantes causó un evento de muerte regresiva secundaria. Las áreas afectadas ya han sido resembrado y plantadas con rizomas y se han recuperado. En general, la población de esta hierba es estable.[22]

El Rhizomatous de la alga verde del género Caulerpa suelen vivir entre las hierbas y muchos animales hacen de la praderas de esta fanerógama su casa. Estos incluyen los bivalvos y otros moluscos, gusanos poliquetos, anfípodos y peces juveniles que se esconden entre las láminas foliares, erizos de mar, cangrejos y camarones carideos.[8][11]

Thalassia testudinum suele formar una compleja comunidad donde se suelen distinguir diferentes tipos de asociaciones[4][23][24]​ destacando las siguientes:

Importancia en la consolidación del sustrato

Se ha observado que cuando ocurren huracanes las áreas oceánicas donde no existen praderas de Thalassia testudinum se pierde fácilmente el sustrato, mientras que por el contrario donde existen las hojas actúan reduciendo la velocidad de la corriente y rizomas situado en sedimentos permitir la estabilización del sustrato y limita severamente la erosión. Adicionalmente los restos de plantas muertas se acumulan en la zona tranquila formado entre las hojas de vida, una capa de sedimento más gruesa de sustrato o Suelo.[4][7][8][25]

Taxonomía y sistemática

Thalassia testudinum fue descrita científicamente en 1805 por el naturalista británico Joseph Banks en Annals of Botany, Volumen 2, publicado por el naturalista alemán Karl Dietrich Eberhard König.[26]​ Esta es la especie tipo del género Thalassia.[27]

Especies similares

  • Halodule beaudetti, que vive en las mismas áreas, tiene hojas con una longitud media más corta, el extremo menos redondeada y dentada.[28]
  • Thalassia hemprichii, otra especie del mismo género y también llamada "hierba de tortuga", y que se ve muy parecida, vive en el mar Rojo y la cuenca del Indo-Pacífico.[28]

Galería

Referencias

  1. Cornelis den hartog (2005). «Taxonomy and biogeorgraphy of seagrasses». En Anthony W.D.Larkum; Carlos Duarte; Roeberet Orth, eds. Seagrasses: Biology, Ecology and Conservation. Springer-Verlag New York, LLC. ISBN 978-1-4020-2942-4.
  2. World Register of Marine Species (WoRMS) Thalassia testudinum Banks ex König, 1805 AphiaID: 374720
  3. a b Díaz-Piferrer, Manuel. 1972: Alga superiores y fanerógamas marinas. En: Fundación La Salle de Ciencias Naturales. Ecología marina. Editorial Dossat, S.A. Caracas. pp:273-307.
  4. a b c d Rodríguez, Gilberto. 1972: Las comunidades bentónicas. En: Fundación La Salle de Ciencias Naturales. Ecología marina. Editorial Dossat, S.A. Caracas. pp:563-600.
  5. La Cueva, Aurora. 1995: Las plantas en la trama de vida. Lagoven, S.A. Caracas. 64p. ISBN 980-259-652-3
  6. Guiry, M. D.; Guiry, G. M. (2012). «Thalassia testudinum Banks ex König». AlgaeBase. Consultado el 8 de noviembre de 2012.
  7. a b c Prieto, Miguel Ángel. 1981: La predera submarina. Natura, 70-71:30-35
  8. a b c d e López Beatriz. 1992: Caracterización de la comunidad de camarones (Crustacea: Decapoda: Natantia) de la epifauna asociados a una pradera somera de Thalassia testudinum en el Parque Nacional Archipíelago Los Roques. Universidad Central de Venezuela. Trabajo Especial de Grado. Caracas 48p.
  9. Bastidas, Aristides. 1991: Las plantas y sus 13 residencias. Ediciones Corpoven, S.A. Caracas.64p.
  10. a b Colin, Patrick L. (1978). Marine Invertebrates and Plants of the Living Reef. T.F.H. Publications. p. 474–475. ISBN 0-86622-875-6.
  11. a b c d e f g Dineen, J. (25 de julio de 2001). «Thalassia testudinum (Turtle grass)». Smithsonian Marine Station at Fort Pierce. Consultado el 7 de noviembre de 2012.
  12. «Turtle-grass (Thalassia testudinum. Interactive Guide to Caribbean Diving. Marine Species Identification Portal. Consultado el 8 de noviembre de 2012.
  13. Van Tussenbroek, B.I, Santos, M.G. B. & van Dijk, J.K. 2006:. Unusual synchronous spawning by green algae (Bryopsidales), after the passage of Hurricane Wilma (2005) . Botanica Marina 49(3): 270, 271.
  14. a b c Phillips, R.C. & Meñez, E.G. 1988: Seagrasses. vol. 34 pp. 104, 57 figs, 39 maps. Washington, D.C.: Smithsonian Institution Press.
  15. Littler, D.S, Littler, M.M. & Hanisak, M.D. 2008: Submersed plants of the Indian River Lagoon. pp. [1]-286. Washington, D.C.: Offshore Graphics, Inc.
  16. a b c Novak, A.B. & Short, F.T. 2010: Leaf reddening in seagrasses. Botanica marina 53: 93-98.
  17. Norris, J.N. & Bucher, K.E. 1982: Marine algae and seagrasses from Carrie Bow Cay, Belize. In Rützler, K. & Macintyre, I.G. (eds) The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize. I. Structure and communities. Smithsonian Contributions to the Marine Sciences 12: 167-223.
  18. Littler, D.S. & Littler, M.M. 1997: An illustrated flora of the Pelican Cays, Belize. Bulletin of the Biological Society of Washington 9: 1-149, 190 figs.
  19. Littler, D.S. & Littler, M.M. 2000: Caribbean reef plants. An identification guide to the reef plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. pp. 1-542. Washington: Offshore Graphics.
  20. Albis-Salas, M.R. & Gavio, B. 2011: Notes on marine algae in the International Biosphere ReserveSeaflower, Caribbean Colombian I: new records of macroalgal epiphytes on the seagrass Thalassia testudinum. Botanica Marina 54(6): 537-543.
  21. Vera, Beatriz. 1978: Introducción al conocimiento taxoecológico de la comunidad de Thalassia en las aguas costeras de la región noroccidental del edo. Sucre. Universidad de Oriente Trabajo Especial de Grado. Cumaná 89p
  22. a b Short, F. T.; Carruthers, T. J. R.; van Tussenbroek, B.; Zieman, J. (2010). «Thalassia testudinum». IUCN Red List of Threatened Species. Version 2012.2. Consultado el 8 de noviembre de 2012.
  23. Rodríguez, Gilberto. 1959: “The marine communities of Margarita Island, Venezuela”. Bulletin of Marine Science of the Gulf and Caribbean, Coral Gables, FL, 9(3): 237-280.
  24. López, Beatriz. 1991: Métodos de estudio y estructura comunitaria de los crustáceos decápodos asociados a las praderas de fanerógamas marinas. Universidad Central de Venezuela. Seminario Especial de Grado. Caracas. 44p.
  25. EFloras: Thalassia testudinum Banks ex K. D. König, Annals of Botany. 2: 96. 1805.
  26. Divers auteurs, dont Joseph Banks, Annals of Botany, vol. 2, Londres, Karl Dietrich Eberhard König et John Sims, 1805, 600 p.
  27. M.D. Guiry et G.M. Guiry, « Thalassia testudinum Banks ex König 1805: 96.
  28. a b Anne Prouzet et Alain Goyeau, «Thalassia testudinum Banks & Solander ex König», sur doris.ffessm.fr, DORIS.

 title=
license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Thalassia testudinum: Brief Summary ( Spanish; Castilian )

provided by wikipedia ES

Thalassia testudinum, conocido comúnmente como hierba de tortuga [¿comúnmente dónde?], es una especie de planta que habita en el Caribe. Es un habitante del litoral y se caracteriza por formar praderas en lugares arenosos o fangosos poco profundos y con iluminación intensa.​​​​​ Las praderas de Thalassia testudinum constituyen el hábitat de una gran diversidad de invertebrados tales como moluscos y crustáceos,​ además de constituir parte fundamental de la dieta de la tortuga verde (Chelonia mydas) y del manatí (Trichechus manatus).​

license
cc-by-sa-3.0
copyright
Autores y editores de Wikipedia
original
visit source
partner site
wikipedia ES

Thalassia testudinum ( French )

provided by wikipedia FR

Thalassia testudinum également appelée « herbe à tortue », est une plante qui pousse sur les fonds marins tropicaux et forme des herbiers qui constituent des zones de frai pour les poissons. Elle est consommée par les tortues, d'où son nom vernaculaire. Cette plante est originaire de l'Atlantique ouest et vit dans les mers tropicales.

Description

Appareil végétatif

Cette espèce n'est pas une algue mais une plante à fleurs dont tous les organes sont normalement entièrement immergés. Elle possède un rhizome horizontal profondément enfoui sous les sédiments marins (jusqu'à 25 cm), de 3 à 6 mm de diamètre[1],[2]. Les feuilles vertes linéaires, dressées dans l'eau, poussent groupées autour d’une tige très courte. Elles mesurent 30 cm de longueur en moyenne (en fait entre 10 et 60 cm) pour 0,4 à 1,8 cm de largeur[1],[2]. Les bordures sont entières, les 9 à 15 nervures sont fines[2]. L'extrémité de la feuille est arrondie et présente des dentelures microscopiques[3].

Appareil reproducteur

La floraison a lieu en mai-juin, alors que les journées sont longues en jours longs (mai-juin), la fructification entre juin et juillet, et les fruits mûrs se détachent de la plante-mère au cours du mois d'août[4].

Comme les autres espèces du genre Thalassia, Thalassia testudinum est monoïque stricte, c'est-à-dire que les organes mâles et femelles sont situés dans des fleurs différentes d'un même individu. Ces fleurs sont bien visibles, blanc tirant sur le vert ou le rose jusqu'à rose pâle et sont dépourvues de pétales. Les fleurs staminées (mâles) se forment par inflorescence de 1 à 3 fleurs[2]. Chaque fleur porte 9 étamines libres dans lesquelles le pollen est englué dans une matrice gélatineuse ; la propagation de ce dernier se fera dans l'eau[2],[4]. Il n'y a qu'une seule fleur pistilée par inflorescence femelle. L'ovaire ne présente qu'une seule loge ; il est surmonté de 7 ou 8 styles[2].

Le fruit, de couleur verte à vert-jaune ou rouge, est sphérique et a une peau rugueuse, couverte de petites pointes. Il mesure de 1,5 à 2,5 cm de diamètre et s'ouvre en 5 à 8 valves irrégulières[2]. Les graines sont en forme de poire.

L'extension d'un banc de cette herbe se fait grâce à un marcottage naturel par le développement de l'extrémité des rhizomes.

Pour la reproduction sexuée, il a été récemment démontré que de petits invertébrés marins tels que les amphipodes et les polychètes participent à la pollinisation de cette espèce sous-marine[5].

Espèces similaires

L'Halodule beaudetti, qui vit dans les mêmes zones, a des feuilles d'un longueur moyenne plus courte, à l'extrémité moins arrondie et plus déchiquetée[4].

Thalassia hemprichii, autre espèce du même genre et elle aussi appelée "herbe à tortue", lui ressemble énormément mais vit en mer Rouge et dans le bassin Indo-Pacifique[4].

Répartition et habitat

Cette espèce vit dans les mers bordant les Caraïbes et dans le golfe du Mexique ; elle pousse donc sur les côtes atlantiques des États-Unis (du Texas à la Floride), du Mexique, de l'Amérique centrale, des îles des Caraïbes et des Antilles, ainsi que de la Colombie et du Venezuela, en Amérique du Sud. Elle n'a pas été observée plus au nord que Cape Canaveral, en Floride[1].

Elle exige une salinité élevée et ne pousse pas dans les zones trop souvent battues par les vagues, bien qu'elle supporte une exondation et une exposition occasionnelle à l'air durant les marées basses de fort coefficient. Lorsque les eaux sont claires, elle peut se développer jusqu'à 20 m de profondeur[1], même si on la trouve plus fréquemment à moins de 10 m de profondeur[2]. Elle exige une épaisseur de sédiments suffisante pour permettre le développement de ses rhizomes[1] mais autrement, elle se développe sur des fonds marins variés (récifs morts, sable corallien, roches sédimentaires, vases, etc.)[2].

Les bancs de Thalassia testudinum sont souvent associés avec une autre herbe marine, Syringodium filiforme[4].

Rôle écologique

De nombreuses espèces marines se nourrissent de cette plante, s'abritent ou se reproduisent dans la zone de calme créée entre ses feuilles. En effet, plusieurs espèces marines herbivores se nourrissent de ses feuilles, notamment la tortue verte (Chelonia mydas)[1].

Les feuilles ralentissant le courant et les rhizomes implantés dans les sédiments permettent une stabilisation du substrat et limitent fortement son érosion. Les débris de végétaux morts s'accumulent dans la zone de calme ménagée par les feuilles vivantes, contribuant à l'épaississement de la couche de sédiments[2].

Taxinomie et systématique

Thalassia testudinum a été décrite scientifiquement pour la première fois en 1805 par le naturaliste britannique Joseph Banks dans Annals of Botany, Volume 2, édité par le naturaliste allemand Karl Dietrich Eberhard König[6].

Il s'agit de l'espèce type du genre Thalassia[7].

Notes et références

  1. a b c d e et f Marine Species Identification Portal, « Turtle-grass Thalassia testudinum », sur species-identification.org, ETI BioInformatics (consulté le 22 octobre 2012)
  2. a b c d e f g h i et j eFloras.org ; Flora of North America, « Thalassia testudinum », sur www.efloras.org (consulté le 22 octobre 2012)
  3. Voir une photo agrandie de l'apex d'une feuille
  4. a b c d et e Anne Prouzet et Alain Goyeau, « Thalassia testudinum Banks & Solander ex König », sur doris.ffessm.fr, DORIS (consulté le 22 octobre 2012)
  5. article Science et avenir 12/2015
  6. (en) Divers auteurs, dont Joseph Banks, Annals of Botany, vol. 2, Londres, Karl Dietrich Eberhard König et John Sims, 1805, 600 p. (lire en ligne), p. 96
  7. M.D. Guiry et G.M. Guiry, « Thalassia testudinum Banks ex König 1805: 96 », sur www.algaebase.org, National University of Ireland, Galway, janvier 2012 (consulté le 22 octobre 2012)

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Thalassia testudinum: Brief Summary ( French )

provided by wikipedia FR

Thalassia testudinum également appelée « herbe à tortue », est une plante qui pousse sur les fonds marins tropicaux et forme des herbiers qui constituent des zones de frai pour les poissons. Elle est consommée par les tortues, d'où son nom vernaculaire. Cette plante est originaire de l'Atlantique ouest et vit dans les mers tropicales.

license
cc-by-sa-3.0
copyright
Auteurs et éditeurs de Wikipedia
original
visit source
partner site
wikipedia FR

Thalassia testudinum ( Vietnamese )

provided by wikipedia VI

Thalassia testudinum là một loài thực vật có hoa trong họ Hydrocharitaceae. Loài này được Banks & Sol. ex K.D.Koenig miêu tả khoa học đầu tiên năm 1805.[3] Nó mọc thành bãi trên các đáy cát hoặc bùn nông tại Biển CaribbeVịnh Mexico.[4]

Chú thích

  1. ^ den Hartog, C. (2005). “Taxonomy and biogeorgraphy of seagrasses”. Trong Larkum, Anthony W.D.; Duarte, Carlos; Orth, Robert J. Seagrasses: Biology, Ecology and Conservation. Springer-Verlag New York, LLC. ISBN 978-1-4020-2942-4.
  2. ^ Guiry, Michael D. (2012). M. D. Guiry & G. M. Guiry, biên tập. Thalassia testudinum Banks ex König, 1805”. AlgaeBase. National University of Ireland, Galway. Cơ sở dữ liệu sinh vật biển. Truy cập ngày 7 tháng 11 năm 2012.
  3. ^ The Plant List (2010). Thalassia testudinum. Truy cập ngày 16 tháng 7 năm 2013.
  4. ^ Guiry, M. D.; Guiry, G. M. (2012). Thalassia testudinum Banks ex König”. AlgaeBase. Truy cập ngày 8 tháng 11 năm 2012.

Liên kết ngoài


Bài viết về Bộ Trạch tả này vẫn còn sơ khai. Bạn có thể giúp Wikipedia bằng cách mở rộng nội dung để bài được hoàn chỉnh hơn.
license
cc-by-sa-3.0
copyright
Wikipedia tác giả và biên tập viên
original
visit source
partner site
wikipedia VI

Thalassia testudinum: Brief Summary ( Vietnamese )

provided by wikipedia VI

Thalassia testudinum là một loài thực vật có hoa trong họ Hydrocharitaceae. Loài này được Banks & Sol. ex K.D.Koenig miêu tả khoa học đầu tiên năm 1805. Nó mọc thành bãi trên các đáy cát hoặc bùn nông tại Biển CaribbeVịnh Mexico.

license
cc-by-sa-3.0
copyright
Wikipedia tác giả và biên tập viên
original
visit source
partner site
wikipedia VI