dcsimg

Paenibacillus ( Inglês )

fornecido por wikipedia EN

Paenibacillus is a genus of facultative anaerobic, endospore-forming bacteria, originally included within the genus Bacillus and then reclassified as a separate genus in 1993.[8] Bacteria belonging to this genus have been detected in a variety of environments, such as: soil, water, rhizosphere, vegetable matter, forage and insect larvae, as well as clinical samples.[9][10][11][12] The name reflects: Latin paene means almost, so the paenibacilli are literally "almost bacilli". The genus includes P. larvae, which causes American foulbrood in honeybees, P. polymyxa, which is capable of fixing nitrogen, so is used in agriculture and horticulture, the Paenibacillus sp. JDR-2 which is a rich source of chemical agents for biotechnology applications, and pattern-forming strains such as P. vortex and P. dendritiformis discovered in the early 90s,[13][14][15][16][17] which develop complex colonies with intricate architectures[18][19][20][21][22] as shown in the pictures:

Importance

Interest in Paenibacillus spp. has been rapidly growing since many were shown to be important[23][24][25] for agriculture and horticulture (e.g. P. polymyxa), industrial (e.g. P. amylolyticus), and medical applications (e.g. P. peoriate). These bacteria produce various extracellular enzymes such as polysaccharide-degrading enzymes and proteases, which can catalyze a wide variety of synthetic reactions in fields ranging from cosmetics to biofuel production. Various Paenibacillus spp. also produce antimicrobial substances that affect a wide spectrum of micro-organisms[26][27][28] such as fungi, soil bacteria, plant pathogenic bacteria, and even important anaerobic pathogens such as Clostridium botulinum.

More specifically, several Paenibacillus species serve as efficient plant growth-promoting rhizobacteria (PGPR), which competitively colonize plant roots and can simultaneously act as biofertilizers and as antagonists (biopesticides) of recognized root pathogens, such as bacteria, fungi, and nematodes.[29] They enhance plant growth by several direct and indirect mechanisms. Direct mechanisms include phosphate solubilization, nitrogen fixation, degradation of environmental pollutants, and hormone production. Indirect mechanisms include controlling phytopathogens by competing for resources such as iron, amino acids and sugars, as well as by producing antibiotics or lytic enzymes.[30][31] Competition for iron also serves as a strong selective force determining the microbial population in the rhizosphere. Several studies show that PGPR exert their plant growth-promoting activity by depriving native microflora of iron. Although iron is abundant in nature, the extremely low solubility of Fe3+ at pH 7 means that most organisms face the problem of obtaining enough iron from their environments. To fulfill their requirements for iron, bacteria have developed several strategies, including the reduction of ferric to ferrous ions, the secretion of high-affinity iron-chelating compounds, called siderophores, and the uptake of heterologous siderophores. P. vortex's genome, for example,[32] harbors many genes which are employed in these strategies, in particular it has the potential to produce siderophores under iron-limiting conditions.

Despite the increasing interest in Paenibacillus spp., genomic information of these bacteria is lacking. More extensive genome sequencing could provide fundamental insights into pathways involved in complex social behavior of bacteria, and can discover a source of genes with biotechnological potential.

Candidatus Paenibacillus glabratella causes white nodules and high mortality of Biomphalaria glabrata freshwater snails.[33] This is potentially important because Biomphalaria glabrata is an intermediate host of schistosomiasis.[33]

Pattern formation, self-organization, and social behaviors

Several Paenibacillus species can form complex patterns on semisolid surfaces. Development of such complex colonies require self-organization and cooperative behavior of individual cells while employing sophisticated chemical communication called quorum sensing.[13][14][18][20][21][34][35][36] Pattern formation and self-organization in microbial systems is an intriguing phenomenon and reflects social behaviors of bacteria[35][37] that might provide insights into the evolutionary development of the collective action of cells in higher organisms.[13][35][38][39][40][41][42]

Pattern forming in P. vortex

One of the most fascinating pattern forming Paenibacillus species is P. vortex, self-lubricating, flagella-driven bacteria.[32] P. vortex organizes its colonies by generating modules, each consisting of many bacteria, which are used as building blocks for the colony as a whole. The modules are groups of bacteria that move around a common center at about 10 µm/s.

Pattern forming in P. dendritiformis

An additional intriguing pattern forming Paenibacillus species is P. dendritiformis, which generates two different morphotypes[13][14][18][19][20][21] – the branching (or tip-splitting) morphotype and the chiral morphotype that is marked by curly branches with well-defined handedness (see pictures).

These two pattern-forming Paenibacillus strains exhibit many distinct physiological and genetic traits, including β-galactosidase-like activity causing colonies to turn blue on X-gal plates and multiple drug resistance (MDR) (including septrin, penicillin, kanamycin, chloramphenicol, ampicillin, tetracycline, spectinomycin, streptomycin, and mitomycin C). Colonies that are grown on surfaces in Petri dishes exhibit several-fold higher drug resistance in comparison to growth in liquid media. This particular resistance is believed to be due to a surfactant-like liquid front that actually forms a particular pattern on the Petri plate.

References

  1. ^ Gao, Miao; Yang, Hui; Zhao, Ji; Liu, Jun; Sun, Yan-hua; Wang, Yu-jiong; Sun, Jian-guang (2013). "Paenibacillus brassicae sp. nov., isolated from cabbage rhizosphere in Beijing, China". Antonie van Leeuwenhoek. 103 (3): 647–653. doi:10.1007/s10482-012-9849-1. PMID 23180372. S2CID 18884588.
  2. ^ Puri, Akshit; Padda, Kiran Preet; Chanway, Chris P (October 2015). "Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth?". Soil Biology and Biochemistry. 89: 210–216. doi:10.1016/j.soilbio.2015.07.012.
  3. ^ Puri, Akshit; Padda, Kiran Preet; Chanway, Chris P (January 2016). "Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R". Biology and Fertility of Soils. 52 (1): 119–125. doi:10.1007/s00374-015-1051-y. S2CID 15963708.
  4. ^ Puri, Akshit; Padda, Kiran Preet; Chanway, Chris P (June 2016). "Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial". Symbiosis. 69 (2): 123–129. doi:10.1007/s13199-016-0385-z. S2CID 17870808.
  5. ^ Padda, Kiran Preet; Puri, Akshit; Chanway, Chris P (April 2016). "Effect of GFP tagging of Paenibacillus polymyxa P2b-2R on its ability to promote growth of canola and tomato seedlings". Biology and Fertility of Soils. 52 (3): 377–387. doi:10.1007/s00374-015-1083-3. S2CID 18149924.
  6. ^ Padda, Kiran Preet; Puri, Akshit; Chanway, Chris P (7 July 2016). "Plant growth promotion and nitrogen fixation in canola by an endophytic strain of Paenibacillus polymyxa and its GFP-tagged derivative in a long-term study". Botany. 94 (12): 1209–1217. doi:10.1139/cjb-2016-0075.
  7. ^ Yang, Henry; Puri, Akshit; Padda, Kiran Preet; Chanway, Chris P (June 2016). "Effects of Paenibacillus polymyxa inoculation and different soil nitrogen treatments on lodgepole pine seedling growth". Canadian Journal of Forest Research. 46 (6): 816–821. doi:10.1139/cjfr-2015-0456. hdl:1807/72264.
  8. ^ Ash C, Priest FG, Collins MD: Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993, 64:253-260.
  9. ^ Padda, Kiran Preet; Puri, Akshit; Chanway, Chris P. (2017). Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. pp. 165–191. doi:10.1007/978-981-10-5343-6_6. ISBN 9789811053429.
  10. ^ McSpadden Gardener BB: Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems. Phytopathology 2004, 94:1252-1258.
  11. ^ Montes MJ, Mercade E, Bozal N, Guinea J: Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 2004, 54:1521-1526.
  12. ^ Ouyang J, Pei Z, Lutwick L, Dalal S, Yang L, Cassai N, Sandhu K, Hanna B, Wieczorek RL, Bluth M, Pincus MR: Case report: Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis. Ann Clin Lab Sci 2008, 38:393-400.
  13. ^ a b c d Ben-Jacob E, Cohen I: Cooperative formation of bacterial patterns. In Bacteria as Multicellular Organisms Edited by Shapiro JA, Dworkin M. New York: Oxford University Press; 1997: 394-416
  14. ^ a b c Ben-Jacob E, Cohen I, Gutnick DL: Cooperative organization of bacterial colonies: from genotype to morphotype. Annu Rev Microbiol 1998, 52:779-806.
  15. ^ Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I, Czirok A, Vicsek T: Generic modelling of cooperative growth patterns in bacterial colonies. Nature 1994, 368:46-49.
  16. ^ Ben-Jacob E, Shmueli H, Shochet O, Tenenbaum A: Adaptive self-organization during growth of bacterial colonies. Physica A 1992, 187:378-424.
  17. ^ Ben-Jacob E, Shochet O, Tenenbaum A, Avidan O: Evolution of complexity during growth of bacterial colonies. In NATO Advanced Research Workshop; Santa Fe, USA. Edited by Cladis PE, Palffy-Muhorey P. Addison-Wesley Publishing Company; 1995: 619-633.
  18. ^ a b c Ben-Jacob E: Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment. Phil Trans R Soc Lond A 2003, 361:1283-1312.
  19. ^ a b Ben-Jacob E, Cohen I, Golding I, Gutnick DL, Tcherpakov M, Helbing D, Ron IG: Bacterial cooperative organization under antibiotic stress. Physica A 2000, 282:247-282.
  20. ^ a b c Ben-Jacob E, Cohen I, Levine H: Cooperative self-organization of microorganisms. Adv Phys 2000, 49:395-554.
  21. ^ a b c Ben-Jacob E, Levine H: Self-engineering capabilities of bacteria. J R Soc Interface 2005, 3:197-214.
  22. ^ Ingham CJ, Ben-Jacob E: Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells. BMC Microbiol 2008, 8:36.
  23. ^ Choi KK, Park CW, Kim SY, Lyoo WS, Lee SH, Lee JW: Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paeniblacillus amylolyticus KCCM 10508 in dyeing wastewater. J Microbiol Biotechnol 2004, 14:1009-1013.
  24. ^ Konishi J, Maruhashi K: 2-(2'-Hydroxyphenyl)benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization. Appl Microbiol Biotechnol 2003, 62:356-361.
  25. ^ Nielsen P, Sorensen J: Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. Fems Microbiol Ecol 1997, 22:183-192.
  26. ^ Girardin H, Albagnac C, Dargaignaratz C, Nguyen-The C, Carlin F: Antimicrobial activity of foodborne Paenibacillus and Bacillus spp. against Clostridium botulinum. J Food Prot 2002, 65:806-813.
  27. ^ Piuri M, Sanchez-Rivas C, Ruzal SM: A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett Appl Microbiol 1998, 27:9-13.
  28. ^ von der Weid I, Alviano DS, Santos AL, Soares RM, Alviano CS, Seldin L: Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J Appl Microbiol 2003, 95:1143-1151.
  29. ^ Bloemberg GV, Lugtenberg BJ: Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 2001, 4:343-350.
  30. ^ Kloepper JW, Leong J, Teintze M, Schroth MN: Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 1980, 286:885-886.
  31. ^ Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW: Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 2003, 100:4927-4932.
  32. ^ a b Sirota-Madi, A; Olender, T; Helman, Y; Ingham, C; Brainis, I; Roth, D; Hagi, E; Brodsky, L; Leshkowitz, D; Galatenko, V (2010). "Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments". BMC Genomics. 11: 710. doi:10.1186/1471-2164-11-710. PMC 3012674. PMID 21167037.
  33. ^ a b Duval, D.; Galinier, R.; Mouahid, G.; Toulza, E.; Allienne, J. F. (2015). "A Novel Bacterial Pathogen of Biomphalaria glabrata: A Potential Weapon for Schistosomiasis Control?". PLOS Neglected Tropical Diseases. 9 (2): e0003489. doi:10.1371/journal.pntd.0003489. PMC 4342248. PMID 25719489.
  34. ^ Bassler BL, Losick R: Bacterially speaking. Cell 2006, 125:237-246.
  35. ^ a b c Ben-Jacob E, Becker I, Shapira Y, Levine H: Bacterial linguistic communication and social intelligence. Trends Microbiol 2004, 12:366-372.
  36. ^ Dunny GM, Brickman TJ, Dworkin M: Multicellular behavior in bacteria: communication, cooperation, competition and cheating. Bioessays 2008, 30:296-298.
  37. ^ Galperin MY, Gomelsky M: Bacterial Signal Transduction Modules: from Genomics to Biology. ASM News 2005, 71:326-333.
  38. ^ Aguilar C, Vlamakis H, Losick R, Kolter R: Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 2007, 10:638-643.
  39. ^ Dwyer DJ, Kohanski MA, Collins JJ: Networking opportunities for bacteria. Cell 2008, 135:1153-1156.
  40. ^ Kolter R, Greenberg EP: Microbial sciences: the superficial life of microbes. Nature 2006, 441:300-302.
  41. ^ Shapiro JA: Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 1998, 52:81-104.
  42. ^ Shapiro JA, Dworkin M: Bacteria as multicellular organisms. 1st edn: Oxford University Press, USA; 1997.

licença
cc-by-sa-3.0
direitos autorais
Wikipedia authors and editors
original
visite a fonte
site do parceiro
wikipedia EN

Paenibacillus: Brief Summary ( Inglês )

fornecido por wikipedia EN

Paenibacillus is a genus of facultative anaerobic, endospore-forming bacteria, originally included within the genus Bacillus and then reclassified as a separate genus in 1993. Bacteria belonging to this genus have been detected in a variety of environments, such as: soil, water, rhizosphere, vegetable matter, forage and insect larvae, as well as clinical samples. The name reflects: Latin paene means almost, so the paenibacilli are literally "almost bacilli". The genus includes P. larvae, which causes American foulbrood in honeybees, P. polymyxa, which is capable of fixing nitrogen, so is used in agriculture and horticulture, the Paenibacillus sp. JDR-2 which is a rich source of chemical agents for biotechnology applications, and pattern-forming strains such as P. vortex and P. dendritiformis discovered in the early 90s, which develop complex colonies with intricate architectures as shown in the pictures:

A colony generated by the chiral morphotype bacteria of P. dendritiformis: The colony diameter is 5 cm and the colors indicate the bacterial density (bright yellow for high density). The branches are curly with well-defined handedness.

A colony generated by the chiral morphotype bacteria of P. dendritiformis: The colony diameter is 5 cm and the colors indicate the bacterial density (bright yellow for high density). The branches are curly with well-defined handedness.

A colony generated by P. vortex sp. bacteria: The colony diameter is 5 cm and the colors indicate the bacterial density (bright yellow for high density). The bright dots are the vortices described in the text.

A colony generated by P. vortex sp. bacteria: The colony diameter is 5 cm and the colors indicate the bacterial density (bright yellow for high density). The bright dots are the vortices described in the text.

A colony generated by the branching (tip splitting) morphotype bacteria of P. dendritiformis: The colony diameter is 6 cm and the colors indicate the bacterial density (darker shade for higher density).

A colony generated by the branching (tip splitting) morphotype bacteria of P. dendritiformis: The colony diameter is 6 cm and the colors indicate the bacterial density (darker shade for higher density).

licença
cc-by-sa-3.0
direitos autorais
Wikipedia authors and editors
original
visite a fonte
site do parceiro
wikipedia EN

Paenibacillus ( Espanhol; Castelhano )

fornecido por wikipedia ES

Paenibacillus es un género de bacterias, originalmente incluidas en Bacillus. El apelativo refleja este hecho: latín paene significa mucho, luego Paenibacilli es literalmente muchos Bacilli. El género incluye a P. larvae, que causa el loque americana en Apis (género) abeja europea.

Características

Antiguamente considerado un morfotipo de B. subtilis, las especies de Paenibacillus despliegan patrones complejos incluyendo los T tipo (tip-splitting), el C tipo (quiral), y el V tipo (vórtice). Esas formas son estables y exhiben mucha variabilidad fisiológica y genética frente a B. subtilis, incluyendo a las colonias β-galactosidasa causando el viraje a azul en placas de X-gal y múltiples resistencias a drogas (MDR) como ampicilina, tetraciclina, espectinomicina, estreptomicina.

Esa resistencia no se muestra en medio líquido, lo que significa que esa resistencia particular se debe a un líquido surfactante que forma un particular patrón en la placa de Petri. Esta resistencia a antibióticos, la presencia del gen β-gal y su particular morfología en la placa de Petri se usan para identificar y caracterizar la especie visualmente, aunque debido a su resistencia antibiótica es muy difícil encontrar criterios selectivos para las cepas mutantes y seleccionar las secuencias asociadas a los genes de resistencia.

 title=
licença
cc-by-sa-3.0
direitos autorais
Autores y editores de Wikipedia
original
visite a fonte
site do parceiro
wikipedia ES

Paenibacillus: Brief Summary ( Espanhol; Castelhano )

fornecido por wikipedia ES

Paenibacillus es un género de bacterias, originalmente incluidas en Bacillus. El apelativo refleja este hecho: latín paene significa mucho, luego Paenibacilli es literalmente muchos Bacilli. El género incluye a P. larvae, que causa el loque americana en Apis (género) abeja europea.

licença
cc-by-sa-3.0
direitos autorais
Autores y editores de Wikipedia
original
visite a fonte
site do parceiro
wikipedia ES

Paenibacillus ( Galego )

fornecido por wikipedia gl Galician

Paenibacillus é un xénero de bacterias anaeróbicas facultativas, formadoras de endósporas, que orixinalmente estaba incluído no xénero Bacillus e despois foi reclasificado nun xénero separado en 1993.[2] O nome procede do latín paene, case, e de bacillus, polo que Paenibacillus significa case Bacillus. As especies deste xénero atópanse en diversos ambientes como solos, auga, rizosfera, materia vexetal, forraxe e larvas de insectos, ou en mostras clínicas.[3][4][5][6] O xénero inclúe especies como P. larvae, que causa doenzas nas abellas melíferas, P. polymyxa, que pode fixar o nitróxeno e utilízase en agricultura e horticultura, o Paenibacillus sp. JDR-2, que é unha rica fonte de axentes químicos para aplicacións biotecnolóxicas e cepas que forman colonias con patróns característicos como P. vortex e P. dendritiformis descubertas a inicios da década de 1990,[7][8][9][10][11] as cales forman complexas colonias con complicadas estruturas[12][13][14][15][16] como se ilustra nas seguintes imaxes:

Importancia

O interese polos Paenibacillus spp. creceu rapidamente desde que se viu que moitas das súas especies son importantes[17][18][19] para a agricultura e horticultura (como P. polymyxa), a industria (como P. amylolyticus), e para aplicacións médicas (como P. peoriate). Estas bacterias producen varios encimas extracelulares como encimas que degradan polisacáridos e proteases, os cales poden catalizar unha ampla variedade de reaccións sintéticas en campos que van desde a cosmética á produción do biocombustible. Varios Paenibacillus spp. producen tamén substancias antimicrobianas que afectan a un amplo espectro de microorganismos[20][21][22] como fungos, bacterias do solo, bacterias patóxenas de plantas e mesmo patóxenos anaeróbicos importantes como Clostridium botulinum.

Máis especificamente, varias especies de Paenibacillus serven como eficientes rizobacterias que promoven o crecemento das plantas, que poden colonizar competitivamente as raíces das plantas e poden actuar simultaneamente como biofertilizadores e como antagonistas (biopesticidas) de recoñecidos patóxenos das raíces, como bacterias, fungos e nematodos.[23] Potencian o crecemento das plantas por medio de varios mecanismos directos e indirectos. Os mecanismos directos inclúen a solubilización de fosfatos, fixación do nitróxeno, degradación de contaminantes ambientais e produción de compostos que actúan como hormonas. Os mecanismos indirectos inclúen o control de fitopatóxenos ao competiren con eles por recursos como o ferro, aminoácidos e azucres, e ao produciren antibióticos ou encimas líticos.[24][25] A competición polo ferro tamén serve como unha poderosa forza selectiva que determina a poboación microbiana da rizosfera. Varios estudos mostran que as rizobacterias que promoven o crecemento das plantas potencian este crecemento ao privar á microflora nativa do ferro. Aínda que o ferro é abundante na natureza, a solubilidade extremadamente baixa do Fe3+ a pH 7 implica que moitos microorganismos teñen que facer fronte ao problema de obter ferro abondo do seu ambiente. Para cubriren as súas necesidades de ferro, as bacterias desenvolven varias estratexias, como son: (1) a redución de ións férricos a ferrosos, (2) a secreción de compostos queladores do ferro de alta afinidade, chamados sideróforos, e (3) a captación de sideróforos heterólogos. O xenoma de P. vortex, por exemplo,[26] contén moitos xenes que se empregan nestas estratexias, en especial a bacteria ten a capacidade de producir sideróforos en condicións limitantes de ferro.

Malia o crecente interese nos Paenibacillus spp., carecemos de información xenómica dabondo destas bacterias. Unha secuenciación máis exhaustiva dos seus xenomas podería proporcionar pistas fundamentais sobre as vías metabólicas implicadas no complexo comportamento social destas bacterias, e podería descubrirse unha rica fonte de xenes con usos biotecnolóxicos potenciais.

Formación de padróns nas colonias, autoorganización e comportamento social

Varias especies de Paenibacillus poden formar colonias con patróns ou deseños complexos ao creceren en superficies semisólidas. O desenvolvemento destas complexas colonias require autoorganización e comportamento cooperativo entre as células individuais que teñen que empregar unha sofisticada comunicación química.[7][8][12][14][15][27][28][29] A formación de patróns e a autoorganización en sistemas microbianos é un fenómeno intrigante e reflicte os comportamentos sociais das bacterias[28][30] que podería mellorar a nosa comprensión do desenvolvemento evolutivo da acción colectiva das células en organismos superiores.[7][28][31][32][33][34][35]

Formación de patróns en P. vortex

Unha das especies máis fascinantes que forman patróns neste xénero é P. vortex, que son bacterias que se moven con flaxelos.[26] P. vortex organiza as súas colonias xerando módulos, cada un dos cales consta de moitas bacterias, que se utilizan como os "ladrillos" para construír a colonia completa. Os módulos son grupos de bacterias que se moven arredor dun centro común a aproximadamente 10 µm/s.

Formación de patróns en P. dendritiformis

Outro intrigante patrón é o formado por P. dendritiformis, a cal xera dous morfotipos diferentes:[7][8][12][13][14][15] o Ramificante (ou de separación dos extremos), e o Quiral, que ten ramas retortas e con orientación definida (ver as imaxes).

Estes dous tipos de patróns en cepas de Paenibacillus mostran trazos xenéticos e fisiolóxicos distintos como actividade de tipo β-galactosidase, que fai que as colonias se volvan azuis en placas X-gal e a resistencia múltiple a drogas como a septrina, penicilina, kanamicina, cloranfenicol, ampicilina, tetraciclina, espectinomicina, estreptomicina e mitomicina C. As colonias que crecen nas superficies das placas de Petri de cultivo mostran unha resistencia a drogas varias veces maior que as que crecen en medios líquidos. Esta resistencia específica crese que se debe a unha fronte de líquido de tipo surfactante que forma un determinado patrón na placa de Petri.

Notas

  1. Gao, Miao; Yang, Hui; Zhao, Ji; Liu, Jun; Sun, Yan-hua; Wang, Yu-jiong; Sun, Jian-guang (2013). "Paenibacillus brassicae sp. nov., isolated from cabbage rhizosphere in Beijing, China". Antonie van Leeuwenhoek 103 (3): 647–653. doi:10.1007/s10482-012-9849-1.
  2. Ash C, Priest FG, Collins MD: Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 1993, 64:253-260.
  3. Lal S, Tabacchioni S: Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J Microbiol 2009, 49:2-10.
  4. McSpadden Gardener BB: Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems. Phytopathology 2004, 94:1252-1258.
  5. Montes MJ, Mercade E, Bozal N, Guinea J: Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 2004, 54:1521-1526.
  6. Ouyang J, Pei Z, Lutwick L, Dalal S, Yang L, Cassai N, Sandhu K, Hanna B, Wieczorek RL, Bluth M, Pincus MR: Case report: Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis. Ann Clin Lab Sci 2008, 38:393-400.
  7. 7,0 7,1 7,2 7,3 Ben-Jacob E, Cohen I: Cooperative formation of bacterial patterns. In Bacteria as Multicellular Organisms Edited by Shapiro JA, Dworkin M. New York: Oxford University Press; 1997: 394-416
  8. 8,0 8,1 8,2 Ben-Jacob E, Cohen I, Gutnick DL: Cooperative organization of bacterial colonies: from genotype to morphotype. Annu Rev Microbiol 1998, 52:779-806. PMID 9891813.
  9. Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I, Czirok A, Vicsek T: Generic modelling of cooperative growth patterns in bacterial colonies. Nature 1994, 368:46-49.
  10. Ben-Jacob E, Shmueli H, Shochet O, Tenenbaum A: Adaptive self-organization during growth of bacterial colonies. Physica A 1992, 187:378-424.
  11. Ben-Jacob E, Shochet O, Tenenbaum A, Avidan O: Evolution of complexity during growth of bacterial colonies. In NATO Advanced Research Workshop; Santa Fe, USA. Edited by Cladis PE, Palffy-Muhorey P. Addison-Wesley Publishing Company; 1995: 619-633.
  12. 12,0 12,1 12,2 Ben-Jacob E: Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment. Phil Trans R Soc Lond A 2003, 361:1283-1312.
  13. 13,0 13,1 Ben-Jacob E, Cohen I, Golding I, Gutnick DL, Tcherpakov M, Helbing D, Ron IG: Bacterial cooperative organization under antibiotic stress. Physica A 2000, 282:247-282.
  14. 14,0 14,1 14,2 Ben-Jacob E, Cohen I, Levine H: Cooperative self-organization of microorganisms. Adv Phys 2000, 49:395-554.
  15. 15,0 15,1 15,2 Ben-Jacob E, Levine H: Self-engineering capabilities of bacteria. J R Soc Interface 2005, 3:197-214.
  16. Ingham CJ, Ben-Jacob E: Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells. BMC Microbiol 2008, 8:36.
  17. Choi KK, Park CW, Kim SY, Lyoo WS, Lee SH, Lee JW: Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paeniblacillus amylolyticus KCCM 10508 in dyeing wastewater. J Microbiol Biotechnol 2004, 14:1009-1013.
  18. Konishi J, Maruhashi K: 2-(2'-Hydroxyphenyl)benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization. Appl Microbiol Biotechnol 2003, 62:356-361.
  19. Nielsen P, Sorensen J: Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. Fems Microbiol Ecol 1997, 22:183-192.
  20. Girardin H, Albagnac C, Dargaignaratz C, Nguyen-The C, Carlin F: Antimicrobial activity of foodborne Paenibacillus and Bacillus spp. against Clostridium botulinum. J Food Prot 2002, 65:806-813.
  21. Piuri M, Sanchez-Rivas C, Ruzal SM: A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett Appl Microbiol 1998, 27:9-13.
  22. von der Weid I, Alviano DS, Santos AL, Soares RM, Alviano CS, Seldin L: Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J Appl Microbiol 2003, 95:1143-1151.
  23. Bloemberg GV, Lugtenberg BJ: Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 2001, 4:343-350.
  24. Kloepper JW, Leong J, Teintze M, Schroth MN: Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 1980, 286:885-886.
  25. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW: Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 2003, 100:4927-4932.
  26. 26,0 26,1 Sirota-Madi A, Olender T, Helman Y, Ingham C, Brainis I, Roth D, Hagi E, Brodsky L, Leshkowitz D, Galatenko V, et al: Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments. BMC Genomics, 11:710. [1]
  27. Bassler BL, Losick R: Bacterially speaking. Cell 2006, 125:237-246.
  28. 28,0 28,1 28,2 Ben-Jacob E, Becker I, Shapira Y, Levine H: Bacterial linguistic communication and social intelligence. Trends Microbiol 2004, 12:366-372.
  29. Dunny GM, Brickman TJ, Dworkin M: Multicellular behavior in bacteria: communication, cooperation, competition and cheating. Bioessays 2008, 30:296-298.
  30. Galperin MY, Gomelsky M: Bacterial Signal Transduction Modules: from Genomics to Biology. ASM News 2005, 71:326-333.
  31. Aguilar C, Vlamakis H, Losick R, Kolter R: Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 2007, 10:638-643.
  32. Dwyer DJ, Kohanski MA, Collins JJ: Networking opportunities for bacteria. Cell 2008, 135:1153-1156.
  33. Kolter R, Greenberg EP: Microbial sciences: the superficial life of microbes. Nature 2006, 441:300-302.
  34. Shapiro JA: Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 1998, 52:81-104.
  35. Shapiro JA, Dworkin M: Bacteria as multicellular organisms. 1st edn: Oxford University Press, USA; 1997.

Véxase tamén

licença
cc-by-sa-3.0
direitos autorais
Autores e editores de Wikipedia
original
visite a fonte
site do parceiro
wikipedia gl Galician

Paenibacillus: Brief Summary ( Galego )

fornecido por wikipedia gl Galician

Paenibacillus é un xénero de bacterias anaeróbicas facultativas, formadoras de endósporas, que orixinalmente estaba incluído no xénero Bacillus e despois foi reclasificado nun xénero separado en 1993. O nome procede do latín paene, case, e de bacillus, polo que Paenibacillus significa case Bacillus. As especies deste xénero atópanse en diversos ambientes como solos, auga, rizosfera, materia vexetal, forraxe e larvas de insectos, ou en mostras clínicas. O xénero inclúe especies como P. larvae, que causa doenzas nas abellas melíferas, P. polymyxa, que pode fixar o nitróxeno e utilízase en agricultura e horticultura, o Paenibacillus sp. JDR-2, que é unha rica fonte de axentes químicos para aplicacións biotecnolóxicas e cepas que forman colonias con patróns característicos como P. vortex e P. dendritiformis descubertas a inicios da década de 1990, as cales forman complexas colonias con complicadas estruturas como se ilustra nas seguintes imaxes:

 src=

Imaxe 1: Colonia xerada por P. vortex sp.. o diámetro da colonia é de 5 cm e as cores indican a densidade de bacterias (amarelo brillante nas densidades altas). Os puntos brillantes son vórtices.

 src=

Imaxe 2: Colonia xerada polo morfotipo (de extremos separados) Ramificante de P. dendritiformis. O diámetro da colonia é de 6 cm e as cores indican a densidade de bacterias (as sombras máis escuras indican maior densidade).

 src=

Imaxe 3: Colonia xerada polo morfotipo Quiral de P. dendritiformis. O diámetro da colonia é de 5 cm e as cores indican a densidade de bacterias (o amarelo brillante indica maior densidade). Nótese que as ramificacións son retortas con orientacións ben definidas.

licença
cc-by-sa-3.0
direitos autorais
Autores e editores de Wikipedia
original
visite a fonte
site do parceiro
wikipedia gl Galician

Paenibacillus ( Letão )

fornecido por wikipedia LV

Paenibacillus ir baktēriju ģints, kura sākotnēji bija apvienota ar Bacillus ģinti. No latīņu valodas paene nozīmē "gandrīz". Līdz ar to sanāk, ka šīs ģints nosaukumu latviski var tulkot šādi: "gandrīz baciļi".

P. dendritiformis

Ostinas Teksasas universitātes zinātnieki pētījumos ir atklājuši, ka šīs ģints baktērijas P. dendritiformis nonāvē savus sugas brāļus, tiklīdz ir attīstījušās vienu vecāku nākamās paaudzes kolonijā. Toties citas radniecīgās baktēriju sugas tās nenogalina.[1]

P. dentritiformis divas kolonijas nekad nepaplašinās tā, lai tās savstarpēji saskartos. Zinātnieki izvirzīja hipotēzi, ka kolonijas savstarpējo attālumu noskaidro, apmainoties ar ķīmiskiem signāliem. Novietojot stikla plāksnīti starp tām, abas kolonijas katra no savas puses momentā izplatījās līdz stiklam, it kā otras kolonijas nemaz nebūtu, kas šo hipotēzi apstiprināja.[1]

Atsauces un piezīmes

  1. 1,0 1,1 «Bacterial love not always brotherly» (angliski). Skatīts: 2008. gada 30. decembrī.


licença
cc-by-sa-3.0
direitos autorais
Wikipedia autori un redaktori
original
visite a fonte
site do parceiro
wikipedia LV

Paenibacillus: Brief Summary ( Letão )

fornecido por wikipedia LV

Paenibacillus ir baktēriju ģints, kura sākotnēji bija apvienota ar Bacillus ģinti. No latīņu valodas paene nozīmē "gandrīz". Līdz ar to sanāk, ka šīs ģints nosaukumu latviski var tulkot šādi: "gandrīz baciļi".

licença
cc-by-sa-3.0
direitos autorais
Wikipedia autori un redaktori
original
visite a fonte
site do parceiro
wikipedia LV

Laseczka larwy ( Polonês )

fornecido por wikipedia POL
Systematyka Królestwo bakterie Typ Firmicutes Klasa Bacilli Rząd Bacillales Rodzina Paenibacillaceae Rodzaj Paenibacillus Gatunek Laseczka larwy Nazwa systematyczna Paenibacillus larvae, syn. Bacillus larvae

Laseczka larwy (Paenibacillus larvae, syn. Bacillus larvae) - bakteria wywołująca zgnilec złośliwy (Histolysis infectiosa perniciosa larvae apium, Pestis americana larvae apium), chorobotwórcza jedynie dla larw pszczelich. Jest to gram-dodatnia, orzęsiona laseczka wytwarzająca przetrwalniki.

Odznacza się bardzo dużą odpornością na środki odkażające i niekorzystne warunki środowiskowe. Trudno jest zniszczyć zwłaszcza przetrwalniki znajdujące się w wosku i miodzie.

licença
cc-by-sa-3.0
direitos autorais
Autorzy i redaktorzy Wikipedii
original
visite a fonte
site do parceiro
wikipedia POL

Laseczka larwy: Brief Summary ( Polonês )

fornecido por wikipedia POL

Laseczka larwy (Paenibacillus larvae, syn. Bacillus larvae) - bakteria wywołująca zgnilec złośliwy (Histolysis infectiosa perniciosa larvae apium, Pestis americana larvae apium), chorobotwórcza jedynie dla larw pszczelich. Jest to gram-dodatnia, orzęsiona laseczka wytwarzająca przetrwalniki.

Odznacza się bardzo dużą odpornością na środki odkażające i niekorzystne warunki środowiskowe. Trudno jest zniszczyć zwłaszcza przetrwalniki znajdujące się w wosku i miodzie.

licença
cc-by-sa-3.0
direitos autorais
Autorzy i redaktorzy Wikipedii
original
visite a fonte
site do parceiro
wikipedia POL

Paenibacillus ( Ucraniano )

fornecido por wikipedia UK
  1. Ash C, Priest FG & Collins MD (1993). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using а PCR probe test. Proposal for the creation of а new genus Paenibacillus. Antonie Van Leeuwenhoek 64: 253—260.
  2. Cho KM, Hong SJ, Math RK, Islam SM, Kim JO, Lee YH, Kim H, Yun HD (2008). Cloning of two cellulase genes from endophytic Paenibacillus polymyxa GS01 and comparison with cel 44C-man 26A. J Basic Microbiol. 48 (6): 464–72. PMID 18759236.
  3. R. Meskiene et al. Cloning and analysis of agarase-encoding gene from Paenibacillus sp.. Boilogija 1: 1392. Проігноровано невідомий параметр |yaer= (довідка)[недоступне посилання з лютий 2019]
  4. Hosoda A, Sakai M, Kanazawa S (2003). Isolation and characterization of agar-degrading Paenibacillus spp. associated with the rhizosphere of spinach. Biosci Biotechnol Biochem. 67 (5): 1048–55. PMID 12834282.[недоступне посилання з лютий 2019]
  5. Paenibacillus naphthalenovorans that degrades naphthalene. US patent. Архів оригіналу за 2013-06-27. Процитовано 2009-01-18.
  6. Ma YC, Chen SF (2008). Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira. Int J Syst Evol Microbiol. 58 (2): 319–23. PMID 18218925.
  7. Seldin L, Rosado AS, da Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998). Comparison of paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non-root-associated soil from maize planted in two different brazilian soils. Appl Environ Microbiol. 64 (10): 3860–8. PMID 9758811.
  8. Saha P, Mondal AK, Mayilraj S, Krishnamurthi S, Bhattacharya A, Chakrabarti T (2005). Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int J Syst Evol Microbiol. 55 (6): 2577–81. PMID 16280530.
  9. http://cat.inist.fr/?aModele=afficheN&cpsidt=17631187
  10. http://www.springerlink.com/content/04814329w173t0v1/
  11. http://ci.nii.ac.jp/naid/110001102774/en/
  12. Архівована копія. Архів оригіналу за 4 березень 2016. Процитовано 18 січень 2009.
  13. http://www3.interscience.wiley.com/journal/120125087/abstract?CRETRY=1&SRETRY=0


licença
cc-by-sa-3.0
direitos autorais
Автори та редактори Вікіпедії
original
visite a fonte
site do parceiro
wikipedia UK

Paenibacillus: Brief Summary ( Ucraniano )

fornecido por wikipedia UK
Ash C, Priest FG & Collins MD (1993). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using а PCR probe test. Proposal for the creation of а new genus Paenibacillus. Antonie Van Leeuwenhoek 64: 253—260. Cho KM, Hong SJ, Math RK, Islam SM, Kim JO, Lee YH, Kim H, Yun HD (2008). Cloning of two cellulase genes from endophytic Paenibacillus polymyxa GS01 and comparison with cel 44C-man 26A. J Basic Microbiol. 48 (6): 464–72. PMID 18759236. R. Meskiene et al. Cloning and analysis of agarase-encoding gene from Paenibacillus sp.. Boilogija 1: 1392. Проігноровано невідомий параметр |yaer= (довідка)[недоступне посилання з лютий 2019] Hosoda A, Sakai M, Kanazawa S (2003). Isolation and characterization of agar-degrading Paenibacillus spp. associated with the rhizosphere of spinach. Biosci Biotechnol Biochem. 67 (5): 1048–55. PMID 12834282.[недоступне посилання з лютий 2019] Paenibacillus naphthalenovorans that degrades naphthalene. US patent. Архів оригіналу за 2013-06-27. Процитовано 2009-01-18. Ma YC, Chen SF (2008). Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira. Int J Syst Evol Microbiol. 58 (2): 319–23. PMID 18218925. Seldin L, Rosado AS, da Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998). Comparison of paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non-root-associated soil from maize planted in two different brazilian soils. Appl Environ Microbiol. 64 (10): 3860–8. PMID 9758811. Saha P, Mondal AK, Mayilraj S, Krishnamurthi S, Bhattacharya A, Chakrabarti T (2005). Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int J Syst Evol Microbiol. 55 (6): 2577–81. PMID 16280530. http://cat.inist.fr/?aModele=afficheN&cpsidt=17631187 http://www.springerlink.com/content/04814329w173t0v1/ http://ci.nii.ac.jp/naid/110001102774/en/ Архівована копія. Архів оригіналу за 4 березень 2016. Процитовано 18 січень 2009. http://www3.interscience.wiley.com/journal/120125087/abstract?CRETRY=1&SRETRY=0


licença
cc-by-sa-3.0
direitos autorais
Автори та редактори Вікіпедії
original
visite a fonte
site do parceiro
wikipedia UK

Paenibacillus ( Russo )

fornecido por wikipedia русскую Википедию
Класс: Бациллы
Порядок: Bacillales
Семейство: Paenibacillaceae
Род: Paenibacillus
Международное научное название

Paenibacillus Ash et al. 1994

Виды
Wikispecies-logo.svg
Систематика
на Викивидах
Commons-logo.svg
Изображения
на Викискладе
ITIS 957749NCBI 44249EOL 83590

Paenibacillus (лат.) — род грамположительных спорообразующих палочковидных бактерий. Ранее представители этого рода входили в рРНК группу 3 рода Bacillus, в 1993 году Эш, Прист и Коллинс предложили вывести представителей группы 3 в отдельный род Paenibacillus с типовым видом Paenibacillus polymyxa[1].

Название рода произошло от латинского слова «paene» («почти») — в названии рода отражено сходство с родом Bacillus (название рода можно буквально перевести как «почти бациллы»). В род входит Paenibacillus larvae, возбудитель бактериального заболевания пчёламериканского гнильца (англ. American foulbrood); типовой вид Paenibacillus polymyxa является известным продуцентом антибиотика полимиксина.

Биологические свойства

Хемоорганогетеротрофы, аэробы или факультативные анаэробы. Способны гидролизировать большое количество биополимеров, некоторые виды синтезируют целлюлазы[2] и агаразы[3][4], осуществляющие соответственно гидролиз целлюлозы и агар-агара. Paenibacillus naphthalenovorans способна к деструкции нафталина[5]. Некоторые представители способны к азотфиксации[6][7]. Род представлен палочковидными бактериями, образующими термоустойчивые эндоспоры. Некоторые виды подвижны и имеют жгутики. Большинство представителей — мезофилы, есть термофильные представители[8]. Представители рода обитают в почве, ризосфере растений[9], есть эндофитные представители, колонизирующие ткани растений[10], некоторые представители рода патогенны для насекомых[11], например, P. alvei и P. larvae вызывают гнилец. Многие представители продуцируют антимикробиальные вещества, проявляющие бактерицидное и фунгицидное действие[12][13].

См. также

Примечания

  1. Ash C., Priest F. G. & Collins M. D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64: 253—260.
  2. Cloning of two cellulase genes from endophytic Paenibacillus polymyxa GS01 and comparison with cel 44C-man 26A — Cho — 2008 — Journal of Basic Microbiology — Wiley Online Library
  3. http://images.katalogas.lt/maleidykla/bio31/B-55.pdf (недоступная ссылка)
  4. BBB (недоступная ссылка) : Vol. 67 (2003), No. 5, pp. 1048—1055.
  5. Paenibacillus naphthalenovorans that degrades naphthalene — Patent 6905864.
  6. Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira
  7. Comparison of Paenibacillus azotofixans Strains Isolated from Rhizoplane, Rhizosphere, and Non-Root-Associated Soil from Maize Planted in Two Different Brazilian Soils — Seldi …
  8. Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India — Saha et al. 55 (6): 2577 — International Journal of Systematic and Evolution …
  9. Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea
  10. SpringerLink — Journal Article
  11. CiNii Article — A new strain of Paenibacillus lentimorbus isolated from larvae of the oriental beetle, Blitopertha orientalis (Coleoptera: Scarabaeidae), in Chiba Prefecture, Japan
  12. Evaluation of antimicrobial activity in Paenibacillus spp. strains isolated from natural environment Архивировано 4 марта 2016 года.
  13. Isolation of an antifungal Paenibacillus strain HT16 from locusts and purification of its medium-dependent antagonistic component — Zhou — 2008 — Journal of Applied Microbiolo …
licença
cc-by-sa-3.0
direitos autorais
Авторы и редакторы Википедии

Paenibacillus: Brief Summary ( Russo )

fornecido por wikipedia русскую Википедию

Paenibacillus (лат.) — род грамположительных спорообразующих палочковидных бактерий. Ранее представители этого рода входили в рРНК группу 3 рода Bacillus, в 1993 году Эш, Прист и Коллинс предложили вывести представителей группы 3 в отдельный род Paenibacillus с типовым видом Paenibacillus polymyxa.

Название рода произошло от латинского слова «paene» («почти») — в названии рода отражено сходство с родом Bacillus (название рода можно буквально перевести как «почти бациллы»). В род входит Paenibacillus larvae, возбудитель бактериального заболевания пчёламериканского гнильца (англ. American foulbrood); типовой вид Paenibacillus polymyxa является известным продуцентом антибиотика полимиксина.

licença
cc-by-sa-3.0
direitos autorais
Авторы и редакторы Википедии

パエニバシラス属 ( Japonês )

fornecido por wikipedia 日本語
パエニバシラス属 分類 ドメ
イン
: 真正細菌 Bacteria : フィルミクテス門 Firmicutes : バシラス綱 Bacilli : バシラス目 Bacillales : パエニバシラス科Paenibacillaceae : Paenibacillus 学名 Paenibacillus
Ash et al. 1994 種

パエニバシラス属Paenibacillus属)は、通性嫌気性芽胞産生性のグラム陽性真正細菌の属である。元々現在のバシラス属も含んでいたが、1993年に種の再分類が行われ、バシラス属と分離された[8]。多様な環境(土壌、水圏、根圏、植物内部、飼料、昆虫の幼虫、臨床現場での検体など)から検出されている[9][10][11][12]。名前の由来は、ラテン語のpaene である。これは「大体すべて」を意味し、paenibacilliは「大体すべての桿菌」を意味する。

P. larvae 蜜蜂腐蛆病American foulbroodの原因菌であることが知られている[13]パエニバシラス・ポリミキサP. polymyxa)は窒素固定能を持つ[14]Paenibacillus sp. JDR-2はメチルグルクロノキシランに分解する[15]P. vortexP. dendritiformis は90年代初期に発見された[16][17][18][19][20]。この2菌種はコロニーで特有の複雑模様を形成する。この模様を上記写真で示す[21][22][23][24][25]

  •  src=

    図 1: P. vortex のコロニー: このコロニーの直径は5 cmである。コロニーの色は細胞密度を表し、黄色が強いほど密度が高い。

  •  src=

    図 2: P. dendritiformis の枝型(先端分岐型)のコロニー: このコロニーの直径は6 cmである。コロニーの色は細胞密度を表し、黒色が強いほど密度が高い。

  •  src=

    図 3: P. dendritiformis の非対称型のコロニー: このコロニーの直径は5 cmである。コロニーの色は細胞密度を表し、黄色が強いほど密度が高い。枝型と異なり、枝がカールを巻いている。

重要性[編集]

パエニバシラス属は生育が速いことが知られている[26][27][28]。生育速度はこの細菌の有用性の一つである。農業用や園芸用(e.g. P. alvei, P. ehimensis, P. riograndensis, P. polymyxa)、工業用(e.g. P. amylolyticus, P. algorifonticola, P. chitinolyticus, P. dendritiformis, P. xylanilyticus)、医療用(e.g. P. peoriate)で利用されている[29]アガラーゼ等の菌体外多糖分解酵素[30]やタンパク質分解酵素といった様々な菌体外酵素を生産する。これら酵素は化粧品からバイオ燃料まで様々な化合物の合成反応に利用することができる。パエニバシラス属は真菌土壌微生物、植物病原菌、ボツリヌス菌Clostridium botulinumなどの広範な微生物に対して抗菌スペクトルを示す物質を生産する。

医療用・臨床上[編集]

パエニバシラス属は抗生物質を産生し、広範な微生物に対して抗菌スペクトルを示す。抗菌対象にはボツリヌス菌Clostridium botulinumが含まれ、特にPaenibacillus polymyxaが強い抗菌活性を示す[31]P. polymyxaが産生する抗菌ペプチドはその他の食品汚染の原因菌 ― 大腸菌Escherichia coliStreptococcus mutansLeuconostoc mesenteroidesBacillus subtilis ― に対しても有効である。また、P. polymyxaLactobacillus乳酸菌など多くのグラム陽性及び陰性細菌の生育を阻害する[32]

パエニバシラス属は通常、ヒトや家畜に対して無害であると考えられている。一方で、脳梗塞症治療中の93歳女性がP. polymyxa菌血症を発症したという症例がある[33]。症状は敗血症のそれであった。

Paenibacillus glabratellaヒラマキガイ科Biomphalaria glabrata に寄生して白いコブを形成し死に至らしめる。この巻貝は住血吸虫症を媒介するため、その対策に有効である可能性がある[34]

農業用[編集]

パエニバシラス属の一部は植物生育促進根圏細菌(PGPR)である[35]生物農薬として植物根でのコロニー形成で他の微生物(細菌、真菌、線虫)と競合し、植物病原菌の繁殖を抑える。例えば、Fusarium oxysporumが病原菌とするトマト根腐萎凋病に対して防除効果がある[36][37]。抑制機構は、鉄やアミノ酸、糖類といった資源の利用での競合並びに抗生物質または溶菌酵素の分泌を含む[38][39]。特に鉄獲得の競合は、根圏での菌叢に大きな影響を与える。いくつかの研究は、PGPRが鉄獲得により菌叢を改変することによって植物生育促進効果を発揮することを示す。これは、土壌中の鉄の大部分は非水溶性形態で存在し、pH 7では非水溶性のFe3+ となるためである。多くの微生物は非水溶性の鉄を利用することができない。

以上の生物農薬としての機能に加え、パエニバシラス属は生物肥料として植物に栄養素を供給する。例えばPaenibacillus peoriaeは生物農薬と生物肥料の両方の効能を持つ[40]P. peoriaeの肥料効果には窒素分子N2の植物栄養化(窒素固定)および、キチナーゼプロテアーゼの産生が含まれる。パエニバシラス属の栄養素の供給機構には土壌中のリン酸の可溶化や窒素固定、土壌の汚染物質の分解、植物ホルモンの産生がある。また、植物への鉄の供給も行う。植物は非水溶性の鉄を利用することはできないが、一部のパエニバシラス属は鉄を可溶化させる。例えばP. vortexは鉄獲得遺伝子を持ち、特に鉄制限下でのシデロホアの産生能力を持つ[41]

模様形成と社会性[編集]

パエニバシラス属の一部は、寒天培地等の半固体の表面上でコロニー形成する際に、コロニーで複雑な模様を作る。複雑な模様形成は、細胞同士での化学物質による緊密なコミュニケーション、他の細胞との社会性や協調性、そして自己組織化によって成り立つ[16][17][21][23][24][42][43][44]。自己組織化での模様形成は他の細胞に対する応答能力であり[43][45]、より高度な多細胞生物への進化に発展し得る機能であると考えられている[16][43][46][47][48][49][50]

P. vortexの場合[編集]

P. vortex はパエニバシラス属の中で最も特徴的な模様を形成する菌種であり、自己潤滑性と鞭毛運動性を有する[41]。模様は、中心の円から線形が放射状に広がり、更にその線形から細い線形が枝のように伸びている構造である。中心の円は最初の細胞が存在していた場所であり、菌が培地に植菌された場合は植菌地点である。運動速度は10 µm/sである。

P. dendritiformisの場合[編集]

P. dendritiformis が形成する模様は2種類ある[16][17][21][22][23][24]。枝型(先端分岐型)と非対称型である。

それぞれの模様を形成する菌株で生理的・遺伝的形質は異なる。例えばβ-ガラクトシダーゼの活性、この酵素活性によるX-gal寒天培地での青色呈色の有無、多剤抵抗性(MDR) (例えばST合剤ペニシリンカナマイシンクロラムフェニコールアンピシリンテトラサイクリンスペクチノマイシンストレプトマイシンマイトマイシンC)。寒天培地で生育した菌株は、液体培地で生育したものに比べて多種の抗生物質に抵抗性を持つ。この抵抗性は、寒天培地上での模様形成に関わる界面活性剤様物質によるものと考えられている。

脚注[編集]

  1. ^ Gao, Miao; Yang, Hui; Zhao, Ji; Liu, Jun; Sun, Yan-hua; Wang, Yu-jiong; Sun, Jian-guang (2013). Paenibacillus brassicae sp. nov., isolated from cabbage rhizosphere in Beijing, China”. Antonie van Leeuwenhoek 103 (3): 647-653. doi:10.1007/s10482-012-9849-1. PMID 23180372. https://www.ncbi.nlm.nih.gov/pubmed/23180372.
  2. ^ Puri, Akshit; Padda, Kiran Preet; Chanway, Chris P (October 2015). “Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth?”. Soil Biology and Biochemistry 89: 210-216. doi:10.1016/j.soilbio.2015.07.012. http://www.sciencedirect.com/science/article/pii/S0038071715002540.
  3. ^ Puri, Akshit; Padda, Kiran Preet; Chanway, Chris P (January 2016). “Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R”. Biology and Fertility of Soils 52 (1): 119-125. doi:10.1007/s00374-015-1051-y. https://link.springer.com/article/10.1007/s00374-015-1051-y.
  4. ^ Puri, Akshit; Padda, Kiran Preet; Chanway, Chris P (June 2016). “Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial”. Symbiosis 69 (2): 123-129. doi:10.1007/s13199-016-0385-z. https://link.springer.com/article/10.1007%2Fs13199-016-0385-z.
  5. ^ Padda, Kiran Preet; Puri, Akshit; Chanway, Chris P (April 2016). “Effect of GFP tagging of Paenibacillus polymyxa P2b-2R on its ability to promote growth of canola and tomato seedlings”. Biology and Fertility of Soils 52 (3): 377-387. doi:10.1007/s00374-015-1083-3. https://link.springer.com/article/10.1007/s00374-015-1083-3.
  6. ^ Padda, Kiran Preet; Puri, Akshit; Chanway, Chris P (7 July 2016). “Plant growth promotion and nitrogen fixation in canola by an endophytic strain of Paenibacillus polymyxa and its GFP-tagged derivative in a long-term study”. Botany 94 (12). doi:10.1139/cjb-2016-0075.
  7. ^ Yang, Henry; Puri, Akshit; Padda, Kiran Preet; Chanway, Chris P (June 2016). “Effects of Paenibacillus polymyxa inoculation and different soil nitrogen treatments on lodgepole pine seedling growth”. Canadian Journal of Forest Research 46 (6): 816-821. doi:10.1139/cjfr-2015-0456.
  8. ^ Ash C, Priest FG, Collins MD (1993-1994). “Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus”. Antonie Van Leeuwenhoek 64 (3-4): 253-60. PMID 8085788. https://www.ncbi.nlm.nih.gov/pubmed/8085788.
  9. ^ Lal S, Tabacchioni S (2009). “Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview”. Indian Journal of Microbiology 49 (1): 2-10. doi:10.1007/s12088-009-0008-y. PMC 3450047. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3450047/.
  10. ^ McSpadden Gardener BB (2004). “Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems”. Phytopathology 94 (11): 1252-1258. doi:10.1094/PHYTO.2004.94.11.1252. PMID 18944463. https://www.ncbi.nlm.nih.gov/pubmed/18944463.
  11. ^ Montes MJ, Mercade E, Bozal N, Guinea J (2004). Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment”. International journal of systematic and evolutionary microbiology 54 (5): 1521-1526. doi:10.1099/ijs.0.63078-0. PMID 15388704. https://www.ncbi.nlm.nih.gov/pubmed/15388704.
  12. ^ Ouyang J, Pei Z, Lutwick L, Dalal S, Yang L, Cassai N, Sandhu K, Hanna B, Wieczorek RL, Bluth M, Pincus MR (2008). “Case report: Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis”. Annals of Clinical & Laboratory Science 38 (4): 393-400. PMC 2955490. PMID 18988935. https://www.ncbi.nlm.nih.gov/pubmed/18988935.
  13. ^ E. Genersch (january 2010). “American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. Journal of Invertebrate Pathology 103: 10-19. doi:10.1016/j.jip.2009.06.015. http://www.sciencedirect.com/science/article/pii/S0022201109001864.
  14. ^ F. H. Grau and P. W. Wilson (1962). “Physiology of nitrogen fixation by Bacillus polymyxa. J. Bacteriol. 83 (3): 490–496. http://jb.asm.org/content/83/3/490.
  15. ^ Virginia Chow, Guang Nong and James F. Preston (2012 Mar 19). “Complete genome sequence of Paenibacillus sp. strain JDR-2”. Stand Genomic Sci. 6 (1): 1–10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368403/.
  16. ^ a b c d Ben-Jacob E, Cohen I (1997). “Cooperative formation of bacterial patterns”. In J. A. Shapiro & M. Dworkin . Bacteria as Multicellular Organisms. pp. 394-416.
  17. ^ a b c Ben-Jacob E, Cohen I, Gutnick DL (1998). “Cooperative organization of bacterial colonies: from genotype to morphotype”. Annual Reviews in Microbiology 52 (1): 779-806. doi:10.1146/annurev.micro.52.1.779. http://www.annualreviews.org/doi/abs/10.1146/annurev.micro.52.1.779.
  18. ^ Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I, Czirok A, Vicsek T (1994). “Generic modelling of cooperative growth patterns in bacterial colonies”. Nature 368 (6466): 46-49. doi:10.1038/368046a0. http://www.nature.com/nature/journal/v368/n6466/abs/368046a0.html?foxtrotcallback=true.
  19. ^ Ben-Jacob E, Shmueli H, Shochet O, Tenenbaum A (1992). “Adaptive self-organization during growth of bacterial colonies”. Physica A: Statistical Mechanics and its Applications 187 (3-4): 378-424. doi:10.1016/0378-4371(92)90002-8. http://www.sciencedirect.com/science/article/pii/0378437192900028.
  20. ^ Ben-Jacob E, Shochet O, Tenenbaum A, Avidan O. P. E. Cladis & P. Palffy-Muhoray. ed. Spatio-temporal patterns in nonequilibrium complex systems.
  21. ^ a b c Ben-Jacob E (2003). “Bacterial self–organization: co–enhancement of complexification and adaptability in a dynamic environment”. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 361 (1807): 1283-1312. doi:10.1098/rsta.2003.1199. http://rsta.royalsocietypublishing.org/content/361/1807/1283.short.
  22. ^ a b Ben-Jacob E, Cohen I, Golding I, Gutnick DL, Tcherpakov M, Helbing D, Ron IG (2000). “Bacterial cooperative organization under antibiotic stress”. Physica A: Statistical Mechanics and its Applications 282 (1): 247-282. doi:10.1016/S0378-4371(00)00093-5. http://www.sciencedirect.com/science/article/pii/S0378437100000935.
  23. ^ a b c Eshel Ben-Jacob, Inon Cohen & Herbert Levine (2000). “Cooperative self-organization of microorganisms”. Advances in Physics 49 (4): 395-554. doi:10.1080/000187300405228. http://www.tandfonline.com/doi/abs/10.1080/000187300405228.
  24. ^ a b c Ben-Jacob E, Levine H (2006). “Self-engineering capabilities of bacteria”. Journal of The Royal Society Interface 3 (6): 197-214. doi:10.1098/rsif.2005.0089. http://rsif.royalsocietypublishing.org/content/3/6/197.short.
  25. ^ Colin J Ingham and Eshel Ben Jacob (2008). “Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells”. BMC microbiology 8 (1): 36. doi:10.1186/1471-2180-8-36. https://bmcmicrobiol.biomedcentral.com/articles/10.1186/1471-2180-8-36.
  26. ^ Kwang Keun Choi, Chul Hwan Park, Sang Yong Kim, Won Seok Lyoo, Sang Hun Lee, Jin Won Lee (2004). “Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paeniblacillus amylolyticus KCCM 10508 in dyeing wastewater”. Journal of Microbiology and Biotechnology 14 (5): 1009-1013. http://www.jmb.or.kr/journal/download.php?Filedir=../submission/Journal/014/&num=1467.
  27. ^ Konishi J, Maruhashi K (2003). “2-(2'-Hydroxyphenyl)benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization”. Applied microbiology and biotechnology 62 (4): 356-361. doi:10.1007/s00253-003-1331-6. https://link.springer.com/article/10.1007/s00253-003-1331-6.
  28. ^ Nielsen P, Sorensen J (1997). “Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere”. FEMS Microbiology Ecology 22 (3): 183-192. doi:10.1111/j.1574-6941.1997.tb00370.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6941.1997.tb00370.x/full.
  29. ^ Shashi Kiran & Arvind Gulati (2017). “Paenibacillus ihbetae sp. nov., a cold-adapted antimicrobial producing bacterium isolated from high altitude Suraj Tal Lake in the Indian Trans-Himalayas”. Systematic and Applied Microbiology 16. doi:10.1016/j.syapm.2017.07.005. http://www.sciencedirect.com/science/article/pii/S0723202017300930.
  30. ^ 細田晃文, 境雅夫, 金澤晋二郎 (2002). “6-25 植物根圏から分離したアガラーゼ活性をもつ Paenibacillus 属の多様性 (6. 土壌生物)”. 日本土壌肥料学会講演要旨集. http://ci.nii.ac.jp/lognavi?name=nels&lang=en&type=pdf&id=ART0001857630.
  31. ^ Girardin H, Albagnac C, Dargaignaratz C, Nguyen-The C, Carlin F (2002 May). “Antimicrobial activity of foodborne Paenibacillus and Bacillus spp. against Clostridium botulinum. Journal of food protection 65 (5): 806-813. PMID 12030292. https://www.ncbi.nlm.nih.gov/pubmed/12030292.
  32. ^ Piuri M, Sanchez-Rivas C, Ruzal SM (1998 Jul). “A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages”. Letters in applied microbiology 27 (1): 9-13. PMID 9722991. https://www.ncbi.nlm.nih.gov/pubmed/9722991.
  33. ^ 那須 美行, 野坂 嘉友, 大塚 喜人, 敦賀 俊彦, 中島 道子, 渡辺 泰宏, 神 雅彦 (2003). “脳梗塞症治療中に発症したP. polymyxa菌血症の1例”. 感染学症雑誌 77 (10): 844-848. doi:10.11150/kansenshogakuzasshi1970.77.844. https://www.jstage.jst.go.jp/article/kansenshogakuzasshi1970/77/10/77_10_844/_article/-char/ja/.
  34. ^ David Duval , Richard Galinier, Gabriel Mouahid, Eve Toulza, Jean François Allienne, Julien Portela, Christophe Calvayrac, Anne Rognon, Nathalie Arancibia, Guillaume Mitta, André Théron, Benjamin Gourbal (2015). “A Novel Bacterial Pathogen of Biomphalaria glabrata: A Potential Weapon for Schistosomiasis Control?”. PLoS neglected tropical diseases 9 (2): e0003489. doi:10.1371/journal.pntd.0003489. http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003489.
  35. ^ Bloemberg GV, Lugtenberg BJ (2001). “Molecular basis of plant growth promotion and biocontrol by rhizobacteria”. Current opinion in plant biology 4 (4): 343-350. doi:10.1016/S1369-5266(00)00183-7. http://www.sciencedirect.com/science/article/pii/S1369526600001837.
  36. ^ 岩本豊 , Katsunari Matsuura, Ikuo Sato, Shigenobu Yoshida, Seiya Tsushima, Masataka Aino (2013). “The suppressive effect of a Paenibacillus isolate on crown and root rot disease of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici in tomato field”. Annual Report of The Kansai Plant Protection Society 55: 67-69. doi:10.4165/kapps.55.67. https://www.jstage.jst.go.jp/article/kapps/55/0/55_67/_article.
  37. ^ 佐藤育男・吉田重信・岩本 豊・相野公孝・百町満朗・清水将文・對馬誠也. “2012”. 日植病報 78 (249). doi:10.4165/kapps.55.67. https://www.jstage.jst.go.jp/article/kapps/55/0/55_67/_article/-char/ja/.
  38. ^ Kloepper JW, Leong J, Teintze M, Schroth MN (28 Aug 1980). “Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria”. Nature 286: 885-886. doi:10.1038/286885a0. https://www.nature.com/nature/journal/v286/n5776/abs/286885a0.html.
  39. ^ Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003). “Bacterial volatiles promote growth in Arabidopsis”. Proceedings of the National Academy of Sciences 100 (8): 4927-4932. doi:10.1073/pnas.0730845100. http://www.pnas.org/content/100/8/4927.short.
  40. ^ von der Weid I, Alviano DS, Santos AL, Soares RM, Alviano CS, Seldin L (2003). “Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi”. Journal of applied microbiology. 95 (5): 1143-51. PMID 14633044. https://www.ncbi.nlm.nih.gov/pubmed/14633044.
  41. ^ a b Alexandra Sirota-Madi, Tsviya Olender, Yael Helman, Colin Ingham, Ina Brainis, Dalit Roth, Efrat Hagi, Leonid Brodsky, Dena Leshkowitz, Vladimir Galatenko, Vladimir Nikolaev, Raja C Mugasimangalam, Sharron Bransburg-Zabary, David L Gutnick, Doron Lancet and Eshel Ben-Jacob (2010). “Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments”. BMC genomics 11 (1): 710. doi:10.1186/1471-2164-11-710. https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-11-710.
  42. ^ Bassler BL, Losick R (2006). “Bacterially speaking”. Cell 125 (2): 237-246. doi:10.1016/j.cell.2006.04.001. http://www.sciencedirect.com/science/article/pii/S0092867406004338.
  43. ^ a b c Ben-Jacob E, Becker I, Shapira Y, Levine H (2004). “Bacterial linguistic communication and social intelligence”. TRENDS in Microbiology 12 (8): 366-372. doi:10.1016/j.tim.2004.06.006. http://www.sciencedirect.com/science/article/pii/S0966842X04001386.
  44. ^ Dunny GM, Brickman TJ, Dworkin M (2008). “Multicellular behavior in bacteria: communication, cooperation, competition and cheating”. Bioessays 30 (4): 296-298. doi:10.1002/bies.20740. http://onlinelibrary.wiley.com/doi/10.1002/bies.20740/full.
  45. ^ Michael Y. Galperin and Mark Gomelsky (2005). “Bacterial Signal Transduction Modules: from Genomics to Biology”. ASM News 71 (7): 326-333. https://www.asm.org/ccLibraryFiles/FILENAME/000000001606/znw00705000326.pdf.
  46. ^ Aguilar C, Vlamakis H, Losick R, Kolter R (2007). “Thinking about Bacillus subtilis as a multicellular organism”. Current opinion in microbiology 10 (6): 638-643. doi:10.1016/j.mib.2007.09.006. http://www.sciencedirect.com/science/article/pii/S1369527407001312.
  47. ^ Daniel J. Dwyer, Michael A. Kohanski, James J. Collins (2008). “Networking opportunities for bacteria”. Cell 135 (7): 1153-1156. doi:10.1016/j.cell.2008.12.016. http://www.sciencedirect.com/science/article/pii/S0092867408015778.
  48. ^ Kolter R, Greenberg EP (2006). “Microbial sciences: the superficial life of microbes”. Nature 441 (7091): 300-302. doi:10.1038/441300a. https://www.nature.com/nature/journal/v441/n7091/full/441300a.html.
  49. ^ Shapiro JA (Oct 1998). “Thinking about bacterial populations as multicellular organisms”. Annual Reviews in Microbiology 52 (1): 81-104. doi:10.1146/annurev.micro.52.1.81. http://www.annualreviews.org/doi/abs/10.1146/annurev.micro.52.1.81.
  50. ^ Shapiro JA, Dworkin M (1997). Bacteria as multicellular organisms 1st. USA: Oxford University Press. ISBN 0195091590.

外部リンク[編集]

 title=
licença
cc-by-sa-3.0
direitos autorais
ウィキペディアの著者と編集者
original
visite a fonte
site do parceiro
wikipedia 日本語

パエニバシラス属: Brief Summary ( Japonês )

fornecido por wikipedia 日本語

パエニバシラス属(Paenibacillus属)は、通性嫌気性芽胞産生性のグラム陽性真正細菌の属である。元々現在のバシラス属も含んでいたが、1993年に種の再分類が行われ、バシラス属と分離された。多様な環境(土壌、水圏、根圏、植物内部、飼料、昆虫の幼虫、臨床現場での検体など)から検出されている。名前の由来は、ラテン語のpaene である。これは「大体すべて」を意味し、paenibacilliは「大体すべての桿菌」を意味する。

P. larvae は蜜蜂腐蛆病American foulbroodの原因菌であることが知られている。パエニバシラス・ポリミキサ(P. polymyxa)は窒素固定能を持つ。Paenibacillus sp. JDR-2はメチルグルクロノキシランに分解する。P. vortex とP. dendritiformis は90年代初期に発見された。この2菌種はコロニーで特有の複雑模様を形成する。この模様を上記写真で示す。

 src=

図 1: P. vortex のコロニー: このコロニーの直径は5 cmである。コロニーの色は細胞密度を表し、黄色が強いほど密度が高い。

 src=

図 2: P. dendritiformis の枝型(先端分岐型)のコロニー: このコロニーの直径は6 cmである。コロニーの色は細胞密度を表し、黒色が強いほど密度が高い。

 src=

図 3: P. dendritiformis の非対称型のコロニー: このコロニーの直径は5 cmである。コロニーの色は細胞密度を表し、黄色が強いほど密度が高い。枝型と異なり、枝がカールを巻いている。

licença
cc-by-sa-3.0
direitos autorais
ウィキペディアの著者と編集者
original
visite a fonte
site do parceiro
wikipedia 日本語