dcsimg
Imagem de Helminthosporium solani Durieu & Mont. 1849
Life » » Fungi » » Ascomycota » » Massarinaceae »

Helminthosporium solani Durieu & Mont. 1849

Associations ( Inglês )

fornecido por BioImages, the virtual fieldguide, UK
Foodplant / saprobe
colony of Helminthosporium dematiaceous anamorph of Helminthosporium solani is saprobic on dead stem of Solanum dulcamara
Remarks: season: 9-2

Foodplant / spot causer
colony of Helminthosporium dematiaceous anamorph of Helminthosporium solani causes spots on tuber of Solanum tuberosum

licença
cc-by-nc-sa-3.0
direitos autorais
BioImages
projeto
BioImages

Silberschorf ( Alemão )

fornecido por wikipedia DE

Der Silberschorf (Helminthosporium solani) ist eine Pilzkrankheit der Kartoffel. Die Krankheit verbreitet sich hauptsächlich durch infizierte Knollen, der Pilz kann aber mehrere Monate im Boden überleben. Die Infektion findet primär im Feld statt, ist aber auch im Lager möglich.

Symptome und Biologie

Auf Sorten mit roter Haut bilden sich helle, silbrige, gut erkennbare Flecken, auf denen sich später die Sporen bilden. Bei der Ernte sind die Symptome kaum sichtbar und entwickeln sich erst während der Lagerung, wenn Temperatur (ab 5 °C; optimal 20–25 °C) und Luftfeuchte günstig sind. Die durch die Krankheit hervorgerufene Ablösung der Haut begünstigt die Dehydratation und das Welken der Knollen.

Bekämpfung

  • Gute Lagerbedingungen
  • Gesundes Pflanzengut benutzen
  • Pflanzgut beizen

Literatur

  • Horst Börner: Pflanzenkrankheiten und Pflanzenschutz. 7. Auflage, UTB 518, Verlag Eugen Ulmer, Stuttgart.

Weblinks

 title=
licença
cc-by-sa-3.0
direitos autorais
Autoren und Herausgeber von Wikipedia
original
visite a fonte
site do parceiro
wikipedia DE

Silberschorf: Brief Summary ( Alemão )

fornecido por wikipedia DE

Der Silberschorf (Helminthosporium solani) ist eine Pilzkrankheit der Kartoffel. Die Krankheit verbreitet sich hauptsächlich durch infizierte Knollen, der Pilz kann aber mehrere Monate im Boden überleben. Die Infektion findet primär im Feld statt, ist aber auch im Lager möglich.

licença
cc-by-sa-3.0
direitos autorais
Autoren und Herausgeber von Wikipedia
original
visite a fonte
site do parceiro
wikipedia DE

Helminthosporium solani ( Frísio Ocidental )

fornecido por wikipedia emerging languages
 src=
Skurft op Doré

Sulverskurft is in plantesykte dy’t feroarsake wurdt troch de patogeen Helminthosporium solani. Dit patogeen is in skimmel dy’t spesifyk is foar it besmetten fan allinnich ierdappelknollen. Sulverskurft is in skylsykte, wat betsjut dat it effekt op de knollen meast kosmetysk fan aard is en dat it de hannel beynfloedet.[1] Der binne inkelde rapporten oer it effekt op groei en opbringst.[2] dit wurdt feroarsake troch ljochtbrune plakken, dy’t op har bar it azemfermogen fan de skyl feroaret wat krimp feroarsaket en wetterferlies jout, wat lang om let resultearret yn gewichtsferlies.[1] De sykte is ekonomysk wichtich wurden omdat ierdappels mei sulverskurt troch de yndustry foar ferwurking en streekrjochte konsumpsje ôfwiisd binne.[1] De syktesyklus kin opdield wurde yn twa fazen: op it lân en yn de opslach. It is benammen in knolsykte en de primêre boarne fan inoculum binne yn haadsaak oantaaste poaters. Symptomen ûntwikkelje har en florearje yn de opslach om’t de omstannichheden dêr geskikt binne foar spoarulaasje. De ideale omstannichheden foar de fersprieding fan dizze sykte binne hege temperatueren en hege fochtigens. Gelokkich binne de meardere manieren om de sykte yn de stringen te hâlden.

Tekens en symptomen

 src=
Skurft op ierdappels. Foto: A.J. Gevens, UW-Extension

Sulverskurft is in ierdappelsykte dy’t fersoarsake wurdt troch de anamorfe ascomycete skimmel, Helminthosporium Solani. Ierdappelknollen binne de iennichst bekende gasthear fan Helminthosporium solani. It is in tige spesifyk patogeen dat gjin sekundêre of alternative gasthear hat. In algemien symptoom fan dizze sykte is dat de skyl fan de ierdappel ferbleket. Dy plakken binne brún en/of griis troch it ferlies fan pigmint, en se binne meast ûnregelmjittich fan foarm. Nei it rispjen kin de skyl fierder krimpe en ferskronfelje wat ta fochtferlies liedt.[3] Swarte plakken kinne ek oantroffen wurde op it oerflak fan besmette knollen, dy’t in teken fan de sykte binne. Dy binne gearstald út konidia en konidiofoaren fan de patogene skimmel.[4] De konidia wurde skaaimerke troch in tige donkere melanisaasje en it hawwen fan meardere pseudosepta. In oar skaaimerk fan dizze skimmel is it ûntbrekken fan motile spoaren.

Krekt as by in soad oare skimmelsykten by planten kin in diagnoaze steld wurde troch te sykjen nei spesifike seksuele struktueren fan de skimmel en har te observearejen oangeande de spesifike skaaimerken foar sulverskurft.[4] In oare wize dêr’t sulverskurft op fêststeld wurde kin, is troch middel fan molekulêre techniken, lykas PCR en sekwinsearring, om de oanwêzigens fan it patogeen oan te toanen. It primêre pear, HSF19-HSR447, is spesifyk generearre om mar in part fan Helminthosporium Solani DNA te amplifisearjen.[5]

Op dit stuit binne gjin bekende gasthearfaktors identifisearre dy’t ferantwurdlik binne foar de ferheging fan de gefoeligens of ûntjouwing fan de sykte. It liket dat de leefomstannichheden in wichtige rol spylje yn de earnst fan dizze sykte.

Syktesyklus

De syktesyklus fan sulverskurft kin yn twa fazen opdield wurde (lân en opslach).[1] De primêre boarne fan inoculum is de ynfektearre poater. Dit inoculum wurdt dan troch in ûnbekend meganisme oerbrocht op de dochterknollen. Alhoewol’t yndirekt bewiis suggerearret dat it bart as se streekrjocht yn kontakt of tichtby de dochterknollen komme.[1] Konidia dat op de skyl fan de ierdappel oanmakke is wurdt troch rein of yrrigaasje oerbrocht op oare net-ynfektearren. Dizze konidia úntkymje en ynfektearje knollen. It patogeen kringt troch de periderm of lentisellen. Dêrnei ferswakket it patogeen de peridermsellen yn de knol. Ynfeksje kin barre as knollen foarme wurde en kin trochgean yn it seizoen.[6] By de rispinge (meast simmerdeis), binne sulverskurftsymptomen net al te dúdlik. Lykwols, de symptomen ûntwikkelje har en boazje oan troch relative fochtigens en hege temperatueren yn de opslach, omdat dy omstannichheden befoarderlik binne foar spoarulaasje.[1] Sekundêr inoculum wurdt makke troch konidia, dat troch fentilaasjewyn yn de opslach ferspraat wurde kin.. As in ierdappel út dizze opslach plante wurdt, kin dat inoculum yn it lân bringe.[4] Der waard oannommen dat oerwintere inoculumhâldende grûn net wichtich wie yn de syktesyklus, mar resinte stúdzjes suggerearje dat H.solani in (koart) skoft yn de grûn oerlibje kin, wat mear ynfeksje fersoarsaakje kin.[4]

It is in net-folmakke skimmel en syn teleomorf is net beskreaun.[1] Sykteferskynsels komme foar op knollen, mar net op ranken (wynstokken) of woartels, en binne beheind ta de periderm, gearstald út phellem, phelloderm en kortikaalkortikale lagen dy’t de epidermis fan de knol ferfange. [7] Sjoch de paragraaf hjirûnder om it foarkommen en de earnst fan ferskillende fazen fan de hjir neamde libbenssyklus te begripen.

Miljeu

Der binne in tal betingsten dy’t de fersprieding en ûntwikkeling fan H. solani befoarderje. Meast smyt in temperatuer tusken 15 ~ 32 °C yn kombinaasje mei luchtfochtigens konidiaal kymjen op.[1] Dêrnjonken binne der nochal wat kulturele gewoanten dy’t de omstannichheden beynfloedzje dy’t de fersprieding en ûntwikkeling fan de sykte befoarderje. Dy gewoanten binne: de mjitte fan oanwêzigens fan H.solani op sied-, plant-, en rispdagen, fruchtwiksel en magasynbehear. [4] Der is oantoand[8] dat letter rispjen de ûntwikkeling fan de sykte stimulearret. Ek is oantoand dat de sykte earnstiger wie by mear planten de kante meter.[4] De kombinaasje fan dy faktoaren hawwe effekt op de sykteferdieling en ûntwikkeling.

Patogeneze

De spoaren kinne noch oant sawat twa jier ynfektearje en sykte feroarsaakje yn dochterknollen yn de grûn. It is ek mooglik dat it patogeen him ferspriedt troch troch de woartels fan de ierdappelplant nei de ûntwikkeljende knollen te gean en ynfeksje te feroarsaakjen. H. solani konidia wurde oantroffen op de bûtenkant fan ierdappels, en de skimmeltriedden kringe de knol yn om sykte te feroarsaakjen. It patogeen kin it weefsel ynkringe troch wûnen of natuerlike iepenings, mar ek streekrjocht penetrearje yn de periderm mei help fan in appressoarium en penetraasjepin[9] De skimmel sit yn de bûtenste lagen fan de ierdappel en kin net botte djip yn de knol ynfektearje. De ferkleuring op de periderm fan de ierdappel komt troch it ferlies fan pigmintaasje fersoarsake troch slimme drûchte fan de sel- en suberinôfsetting.[10] Op dit stuit is net in soad bekend oer de molekulêre aspekten fan it meganisme foar it fersprieden en de ynfeksje fan de sykte, mar der is op’t heden in ûndersyk nei dit patogeen geande foar in better begryp.[4]

Syktebestriding

Gemyske bestriding

Fungisiden (skimmelbestriders) bedimje in soad plantesykten effisjint, mar der binne mar in pear types fungisiden dy’t effisjint wurkje tsjin sulverskurft.[11] Fungisiden wurde meast tapast op grûn of poaters foar it setten.

Thiabendazole (TBZ) Fungiside

TBZ wurdt sûnt begjin santiger jierren fan de foarige iuw in soad brûkt as behanneling fan ierdappels nei it rispjen.[11] Sulverskurft op knollen kin fermindere wurde troch it systemysk breed-spektrum fungiside TBZ.[12] TBZ is leech toksysk en wurdt brûkt om sulverskurft foar te kommen of foar in hoartsje te bedimjen, b.g. in pear moanne, sûnder ynfloed op kwaliteit of retinsje fan residuën.[12]

TBZ-Resistint H. solani Isolaten

De TBZ-fungiside wie oant 1977 och sa effektyf doe’t TBZ-resistinte H. solani isolaten oantroffen waarden yn ierdappels yn winkels, nei’t se nei de rispinge behannele wiene.[13] TBZ resistinsje yn H. solani ûntstie út in mutaasjepunt fan in inkelde baze yn kodon 198 fan glutaminesoer oant glutamine of alanine yn it b-tubuline.[14] Dizze mutaasje fungearret om TBZ en oare benzimidazole fungisiden fan bining oan it H. solani b-tubulin-gen op te kearen, wat resultearret yn TBZ-resistinte fenotypes.[11]

Fungisiden oars as TBZ

Omdat de frekwinsje fan resistinte isolaten foar TBZ tanimt, binne guon oare fungisiden test om sulverskurft yn de stringen te hâlden, lykas imazalil, prochloraz en propiconazole fungisiden, dy’t allegearre klassifisearre binne yn DMI (demetilaasjekearders). Imazalil en prochloraz wurde faak brûkt yn siedbehanneling, wylst propiconazole skimmelkearders meast foar lôfbehanneling binne.

Gasthear wjerstân

Ien fan de wichtichste redenen foar it tanimmend ekonomysk belang fan sulverskurft is it ûntbrekken fan in goede wjerstân yn ierdappelkultivars.[8][11][15]

Ynterspesifike krusings tusken wylde Solanum sp. binne brûkt om de syktewjerstân yn kultivars tsjin S. tuberosum te ferheegjen. Genen út de wylde knoldragende soarten Solanum demissum, Solanum chacoense en Solanum aculae, dy’t in lege spoarulaasje fan H. solani hawwe, binne yn de eftergrûn fan guon Kanadeeske ierdappelkultivars opnommen.[16][17] Dizze ynterspesifike krusings en sekuere seleksjes wurde op resistinsje tsjin ferskillende sykten neisjoen, wêrûnder sulverskurft.[17][18] Der binne lykwols oan no ta noch gjin sulverskurftresistinte kultivars fan Solanum tuberosum identifisearre.[11] Der is brek oan rapporten fan sulverskruftresistinte ierdappelkultivars.[4]

Syktekearende grûn

Grûn kin de ûntwikkeling fan sulverskurft aardich beynfloedzje, likegoed yn de waakstiid as de dêropfolgjende opslachtiid fan in fearnsjier. Grûnsoarten litte ûnderdrukking op ferskate nivo’s sjen.[19] De resultaten fan eksperiminten litte in synjefikante negative korrelaasje sjen tusken swiere skurft, en NO3- en izergehalte yn de grûn. NO3 wie earder negatyf korrelearre mei sulverskurft.[20] Dit wiist mooglik op in ûnderdrukkend effekt fan dizze beide grûnkomponinten.[20] NO3 is in effisjinte stikstofboarne foar H. solani.[21] Dêrom is der gjin te ferwachtsjen streekrjocht negatyf effekt tusken sulverskurft en NO3. In mooglike ferklearring foar dizze waarnimming is dat NO3 funksjonearje kin op oare boaiemmykro-organismen [19] dy’t mooglik as H. solani antagonisten fungearje.[19] Dizze resultaten wize derop dat mykrobe antagonisten de wichtichste komponinten wêze kinne dy’t bydrage oan it syktekearen fan de grûn en harren antagonisten liede kinne ta in effisjinte biologyske bestriding fan sulverskurft.[19]

Biologyske bestriding

Biologyske bestriding wurdt sjoen as in oantreklik alternatyf foar gemikalyen foar de effisjinte, betroubere en miljeufreonlike bestriding fan plantaardige patogenen.[4]

In skimmel út it skaai Cephalosporium Corda (tsjintwurdich oantsjut as Acremonium strictum) wie yn steat om de fersprieding fan sulverskurft yn opslach yn te binen. Cephalosporium hat sjen litten dat it spoarulaasje, spoarekymjen en myceliumgroei fan H. solani gâns ferminderje kin.[22]. Lykwols, Cephalosporium ferminderet sulverskurft op earder ynfektearre ierdappels net.[22]

Yn laboratoariumeksperiminten mei isolaasjes fan de grûn (rizosfear) fan ierdappelplanten yn de sprúttiid, wiene Trichoderma hamatum Bainier, Trichoderma koningii Oudem., Trichoderma polysporum Rifai, Trichoderma harzianum Rifai en Trichoderma viride Pers. de meast ynhibearjende mykro-organismen yn H. solani groei yn vitro.[23]

Achromobacter piechaudii, Bacillus cereus, Cellulomonadaceae fimi, Pseudomonas chlororaphis, Pseudomonas fluorescens, Pseudomonas putida en Streptomyces griseus wiene yn steat om myceliumgroei en/of konidiaal kymjen troch de produksje fan diffundearbere metaboliten te remjen en dat antybiotika foar’t neist hielendal of foar in part ferantwurlik wie foar harrren antagonisme fan H. solani.[24]

Biopestisiden

Serenade ASO (in formulearring fan Bacillus subtilis) bliek sulverskurft te ûnderdrukken, it fermindere sawol de ynfal as de earnst fan sulverskurft ûnder lege syktedruk en fertrage it begjinnen fan sulverskurft yn de opslach sa’n fiif moanne.[25]

Relevânsje

Doe’t sulverskurft foar it earst fûn waard yn Moskou yn 1871, waard it beskôge as in lytse plantesykte.[1] Nei in taname fan de frekwinsje yn Amearika, Jeropa, it Heine Easten, Afrika, Sina en Nij-Seelân sûnt 1968, waard de sykte letter beskôge as in patogeen fan grut belang. Hoewol’t de sykte de ferliezen fan ierdappelopbringst net feroarsake en allinnich it kosmetysk oansjen fan de knol beynfloede, hie it in grutte ynfloed op de ierdappelmerk.[4] Troch de oanboazjende fraach nei oantreklik útsjende ierdappels, binne ierdappels mei sulverskurft troch de yndustry ôfwiisd. Boppedat feroarsaket sulverskurft fochtferlies sadat de knollen dreger te skilen binne. De oerstallige knolkrimp feroarsaket ek gewichtsferlies by de knollen.[26] Troch it kosmetysk effekt, dehydraasje en it gewichtsferlies fan de knollen, rint de merk noch hieltyd in soad ynkomsten mis troch de sykte. Bygelyks, de Idaho-ierdappelyndustry ferlear sawat 7 oant 8,5 miljoen dollar troch de sulverskurft.[27] Net allinnich sakket de (totale opbringst)priis troch it ôfkarren fan ierdappels mei sulverskurft mar der is ek mear tiid nedich foar sortearjen en lêzen fan de ierdappels.

Boarnen, noaten en referinsjes

licença
cc-by-sa-3.0
direitos autorais
Wikipedia auteurs en redakteuren
original
visite a fonte
site do parceiro
wikipedia emerging languages

Helminthosporium solani: Brief Summary ( Frísio Ocidental )

fornecido por wikipedia emerging languages
 src= Skurft op Doré

Sulverskurft is in plantesykte dy’t feroarsake wurdt troch de patogeen Helminthosporium solani. Dit patogeen is in skimmel dy’t spesifyk is foar it besmetten fan allinnich ierdappelknollen. Sulverskurft is in skylsykte, wat betsjut dat it effekt op de knollen meast kosmetysk fan aard is en dat it de hannel beynfloedet. Der binne inkelde rapporten oer it effekt op groei en opbringst. dit wurdt feroarsake troch ljochtbrune plakken, dy’t op har bar it azemfermogen fan de skyl feroaret wat krimp feroarsaket en wetterferlies jout, wat lang om let resultearret yn gewichtsferlies. De sykte is ekonomysk wichtich wurden omdat ierdappels mei sulverskurt troch de yndustry foar ferwurking en streekrjochte konsumpsje ôfwiisd binne. De syktesyklus kin opdield wurde yn twa fazen: op it lân en yn de opslach. It is benammen in knolsykte en de primêre boarne fan inoculum binne yn haadsaak oantaaste poaters. Symptomen ûntwikkelje har en florearje yn de opslach om’t de omstannichheden dêr geskikt binne foar spoarulaasje. De ideale omstannichheden foar de fersprieding fan dizze sykte binne hege temperatueren en hege fochtigens. Gelokkich binne de meardere manieren om de sykte yn de stringen te hâlden.

licença
cc-by-sa-3.0
direitos autorais
Wikipedia auteurs en redakteuren
original
visite a fonte
site do parceiro
wikipedia emerging languages

Helminthosporium solani ( Inglês )

fornecido por wikipedia EN
Silver scurf blemishes on a tuber

Silver scurf is a plant disease that is caused by the plant pathogen Helminthosporium solani. Silver scurf is a blemish disease, meaning the effect it has on tubers is mostly cosmetic and affects "fresh market, processing and seed tuber potatoes."[1] There are some reports of it affecting development, meaning growth and tuber yield. This is caused by light brown lesions, which in turn change the permeability of tuber skin and then it causes tuber shrinkage and water loss, which finally causes weight loss.[1] The disease has become economically important because silver scurf affected potatoes for processing and direct consumption have been rejected by the industry.[1] The disease cycle can be divided into two stages: field and storage. It is mainly a seed borne disease and the primary source of inoculum is mainly infected potato seed tubers. Symptoms develop and worsen in storage because the conditions are conducive to sporulation. The ideal conditions for the spread of this disease are high temperatures and high humidity. There are also many cultural practices that favor spread and development. Luckily, there are multiple ways to help control the disease.

Signs and symptoms

Silver scurf blemishes on a tuber

Silver scurf is a plant disease of potato, which is caused by the anamorphic ascomycete fungus, Helminthosporium solani. Potato tubers are the only known host of Helminthosporium solani. It is a highly specific pathogen which does not have a secondary host or alternate host. A common symptom of this disease is blemishing on the surface of the potato tubers. These blemishes are tan and/or gray due to a loss of pigment, and they are usually irregularly shaped. Also, a post-harvest symptom can be shrinkage and shriveling of the outer tissue of the potato due to water loss.[2] Black spots can also be found on the surface of infected tubers, which are a sign of the disease. These are made up of conidia and conidiophores of the pathogenic fungus.[3] The conidia are characterized by being very darkly melanized and having multiple pseudosepta. Another characteristic of this fungus is the absence of motile spores.

Like with many other fungal plant diseases, a diagnosis can be made by looking for the specific sexual structures of the fungus and observing them for the specific characteristics of silver scurf.[3] Another way that silver scurf can be diagnosed is through molecular techniques, such as PCR and sequencing to identify the presence of the pathogen. The primer pair, HSF19-HSR447, has been generated to be specific for amplifying only a section of Helminthosporium solani DNA.[4]

Currently, no known host factors have been identified that have been linked to increase susceptibility or development of the disease. It seems as though the environmental conditions are what plays a major role in severity of the disease.

Disease cycle

The disease cycle of silver scurf can be divided in two phases (field and storage).[1] The primary source of inoculum is infected potato seed tubers. This inoculum is then transferred to the daughter tubers through an unknown mechanism, although indirect evidence suggests it happens when they come in direct contact or close proximity to daughter tubers.[1] Conidia produced on the surface of seed tubers are dispersed by rain or irrigation to uninfected tubers. These conidia germinate and infect tubers. The pathogen enters through the periderm or lenticels. After that, the pathogen colonizes the periderm cells in the tuber. Infection may happen when tubers are formed and can continue in the season.[5] In harvest (mostly in summer), silver scurf symptoms are not too apparent. However, the symptoms develop and worsen due relatively humid and warm temperatures in storage, since these conditions are conducive to sporulation.[1] Secondary inoculum is produced by conidia, which can spread in storage by wind of ventilation while the tubers are in storage. When a seed tuber from this storage is planted, this can then carry inoculum to the field.[3] It was believed that overwintering soil-borne inoculum wasn’t important in the disease cycle, but recent studies suggest H.solani may survive in the soil for a short period of time, which can cause more infection.[3]

This is an imperfect fungus and its teleomorph has not been described.[1] Disease symptoms appear on tubers, but not on the haulm (vine) or roots, and are limited to the periderm, composed of phellem, phelloderm and cortical layers that replace the epidermis of the tuber.[6] See next section (Environment) to understand the occurrence and severity of the different stages of the life cycle mentioned here.

Environment

There are a number of conditions that favor the spread and development of H. solani. Usually, the temperature range of 15 ~ 32 °C combined with high humidity increase conidial germination.[1] In addition to this, there are many cultural practices which affect the conditions that favor disease spread and development. These practices include: the level of H. solani present on the seed, planting and harvesting dates, crop rotations and warehouse management.[3] It has been demonstrated[7] that later harvest dates increase the development of the disease. It has also been demonstrated that the disease was more severe when planting densities were higher.[3] All of these factors combined have an effect of disease spread and development.

Pathogenesis

The spores can still infect and cause disease in daughter tubers in the soil for about two years.[2] It is also possible for the pathogen to spread by growing through the roots of a potato plant to the developing tubers and cause infection. H. solani conidia are found on the outside of potato tubers, and the hyphae enter the tuber to cause disease. The pathogen can enter the tissue through wounds or natural openings, as well as being able to directly penetrate the periderm with the use of an appressorium and penetration peg.[8] The fungus is contained in the outer layers of the potato and cannot infect very deep into the tuber. The discoloration on the periderm of the potato is formed from the loss of pigmentation caused by extreme dryness of the cell and suberin deposition.[9] Not much is currently known about the molecular aspects of the mechanism for spread and infection of the disease, but there is currently ongoing research on this pathogen to gain a better understanding.[3]

Disease control

Chemical control

Fungicides control many plant diseases efficiently, but very limited types of fungicides are efficient against the silver scurf pathogen.[10] Fungicides usually apply to soil or seed tubers before culturing.

Thiabendazole (TBZ) fungicide

TBZ is widely used as post-harvest treatment on potatoes since the early 1970s.[10] Silver scurf on tubers can be reduced by the systemic broad-spectrum fungicide TBZ.[11] TBZ is low toxicity and is used to prevent or control silver scurf for short time period, e.g. several months, with no effect on quality or retention of residues.[11]

TBZ-resistant H. solani isolates

The TBZ fungicide used to be very effective until 1977 when TBZ-resistant H. solani isolates were found in potato stores, as post-harvest treatment.[12] TBZ resistance in H. solani resulted from a point mutation of a single base at codon 198 from glutamic acid to glutamine, or alanine, in the b-tubulin.[13] This mutation functions in avoiding TBZ and other benzimidazole fungicides from binding to the H. solani b-tubulin gene thus results in TBZ-resistant phenotypes.[10]

Fungicides besides TBZ

As the frequency of resistant isolates to TBZ increase, some other fungicides have been tested to control silver scurf, such as imazalil, prochloraz and propiconazole fungicides, which are all classified in conazole, DMI (demethylation inhibitors). Imazalil and prochloraz fungicides are commonly used in seed treatment, while propiconazole fungicide is usually for foliar treatment.

Host resistance

One of the major reasons for the increasing economic importance of silver scurf is the lack of high levels of resistance in potato cultivars.[7][10][14]

Interspecific crosses with wild Solanum species have been used to increase disease resistance in cultivars of S. tuberosum. Genes from the wild tuber-bearing species Solanum demissum, Solanum chacoense and Solanum aculae, which have low sporulation of H. solani, have been incorporated into the background of some Canadian potato cultivars.[15][16] These interspecific crosses and advanced selections are being screened for resistance to different diseases including silver scurf.[16][17] However, no silver scurf-resistant cultivars of Solanum tuberosum have, thus far, been identified.[10] There is lack of reports of silver scurf resistant potato cultivars.[3]

Suppressive soils

Soil types influenced the development of silver scurf to a great extent, both at harvest season and the following three-month storage period. Some soils displayed suppressiveness in different levels.[18] The results from experimental trials revealed a significant negative correlation between silver scurf disease severity, and soil NO3 content and Fe availability. NO3 had been negatively correlated with silver scurf disease previously.[19] This provides a possible suppressive effect of these two soil components.[19] NO3 is an efficient nitrogen source used by H. solani.[20] Therefore, a direct adverse effect between silver scurf and NO3 is not likely to happen. A probable explanation for this observation is that NO3 could function on other soil microorganisms[18] which possibly act as H. solani antagonists.[18] These results indicated that microbial antagonists may be the key components contributing to soil suppressiveness and their antagonists may lead efficient biological control of silver scurf.[18]

Biological control

Biological control is considered an attractive alternative to chemicals for the efficient, reliable, and environmentally safe control of plant pathogens.[3]

A fungus of the genus Cephalosporium (now renamed Acremonium strictum) was able to decrease the dissemination of silver scurf in storage. Cephalosporium has shown the ability to significantly diminish sporulation, spore germination and mycelial growth of H. solani[21]. However, Cephalosporium does not reduce silver scurf on previously infected potatoes.[21]

In laboratory experiments, isolations from potato growing soil and the rhizosphere of potato plants during sprouting, Trichoderma hamatum, Trichoderma koningii, Trichoderma polysporum, Trichoderma harzianum and Trichoderma viride were the most inhibitory microorganisms to H. solani growth in vitro.[22]

Achromobacter piechaudii, Bacillus cereus, Cellulomonadaceae fimi, Pseudomonas chlororaphis, Pseudomonas fluorescens, Pseudomonas putidaputida, and Streptomyces griseus were able to inhibit mycelial growth and/or conidial germination through the production of diffusible metabolites and that antibiosis was likely responsible fully or partially for their antagonism of H. solani.[23]

Biopesticides

Serenade ASO (a formulation of Bacillus subtilis) has proved to suppress silver scurf, reduced both the incidence and severity of silver scurf under low disease pressure and delayed the beginning of silver scurf in storage for five months.

Relevance

When silver scurf was first found in Moscow in 1871, it was considered as a minor plant disease.[1] After an increase in silver scurf incidence from America, Europe, Middle East, Africa, China, and New Zealand since 1968, the disease was later considered a pathogen of major importance. Although the disease did not cause potato yield losses and only affected the cosmetic appearance of the tuber, it had a huge impact on the potato market.[3] With growing consumer demands for attractive appearance in fresh market cultivars, silver scurf on potatoes with blemishes and discoloration have been rejected by the industry. Furthermore, the silver scurf causes water loss which makes it difficult to peel the tubers. The excess tuber shrinkage also causes weight loss in tubers.[24] From the cosmetic effect, dehydration, and weight loss of the tubers, the fresh market is facing major economic losses from the disease even today. For example, the Idaho's potato industry lost about 7 to 8.5 million dollars from the silver scurf disease.[25] Not only does the cost come from rejecting silver scurf diseased potatoes, but it also comes from an increase in the amount of time needed for sorting and inspecting every potato.

References

  1. ^ a b c d e f g h i Errampalli, D.; Saunders, J. M.; Holley, J. D. (2001). "Emergence of silver scurf (Helminthosporium solani) as an economically important disease of potato". Plant Pathology. 50 (2): 141. doi:10.1046/j.1365-3059.2001.00555.x.
  2. ^ a b Shetty, Kiran. "University of Idaho Extension" (PDF). Silver Scurf of Potatoes. Retrieved 2015-10-21.
  3. ^ a b c d e f g h i j Avis, T. J.; Martinez, C.; Tweddell, R. J. (2010-09-02). "Minireview/Minisynthèse Integrated management of potato silver scurf (Helminthosporium solani)". Canadian Journal of Plant Pathology. 32 (3): 287–297. doi:10.1080/07060661.2010.508627. ISSN 0706-0661. S2CID 49177264.
  4. ^ Olivier, Claudia; Loria, Rosemary (1998-11-01). "Detection of Helminthosporium solani from soil and plant tissue with species-specific PCR primers". FEMS Microbiology Letters. 168 (2): 235–241. doi:10.1111/j.1574-6968.1998.tb13279.x. ISSN 1574-6968.
  5. ^ "Silver Scurf of Potato fact sheet". vegetablemdonline.ppath.cornell.edu. Retrieved 2015-10-20.
  6. ^ Fahn A, ed., 1982. Plant Anatomy. Exeter, UK: Wheaton.
  7. ^ a b MÉRIDA, C.L., LORIA, R., & HALSETH, D.E. (1994). Effects of potato cultivar and time of harvest on the severity of silver scurf. Plant Dis., 78, 146–149.
  8. ^ Hamm, P.B. (August 2007). "Silver Scurf Management in Potatoes" (PDF). {{cite journal}}: Cite journal requires |journal= (help)
  9. ^ Errampalli, D; Saunders, J. (2001). "Emergence of silver scurf (Helminthosporium solani) as an economically important disease of potato". Plant Pathology. 50 (2): 141–153. doi:10.1046/j.1365-3059.2001.00555.x.
  10. ^ a b c d e Errampalli, D.; Saunders, J. M.; Holley, J. D. (2001-04-01). "Emergence of silver scurf (Helminthosporium solani) as an economically important disease of potato". Plant Pathology. 50 (2): 141–153. doi:10.1046/j.1365-3059.2001.00555.x. ISSN 1365-3059.
  11. ^ a b Hide GA, Hirst JM, Griffith RL, 1969a. Control of potato tuber diseases with systemic fungicides. In: Proceedings of the Fifth British Insecticide and Fungicide Conference, Brighton. Croydon, UK: British Crop Protection Council, 310-4.
  12. ^ Hide, G. A.; Hall, Sharon M.; Boorer, Kathryn J. (1988-09-01). "Resistance to thiabendazole in isolates of Helminthosporium solani, the cause of silver scurf disease of potatoes". Plant Pathology. 37 (3): 377–380. doi:10.1111/j.1365-3059.1988.tb02088.x. ISSN 1365-3059.
  13. ^ MKay, G (1997). "A PCR-based method to characterise and identify benzimidazole resistance in Helminthosporium solani". FEMS Microbiology Letters. 152 (2): 371–378. doi:10.1016/s0378-1097(97)00229-2. PMID 9231430.
  14. ^ RODRIGUEZ, D.A. (1994). Studies on epidemiology and management of silver scurf of potato. PhD Thesis. North Dakota State University, Fargo, ND.
  15. ^ De Jong H, Tarn TR, 1984. Using germplasm in potato breeding in Canada. Canadian Agriculture 30, 12-4.
  16. ^ a b Murphy AM, De Jong H, Proudfoot KG, 1999. A multiple disease resistant potato clone developed with classical breeding methodology. Canadian Journal of Plant Pathology 21, 207–12.
  17. ^ Kurowski C, Manzer F, 1992. Re-evaluation of Solanum species accessions showing resistance to bacterial ring rot. American Potato Journal 69, 289-97.
  18. ^ a b c d Martinez, C; Michaud, M; Bélanger, R. R; Tweddell, R. J (2002-12-01). "Identification of soils suppressive against Helminthosporium solani, the causal agent of potato silver scurf". Soil Biology and Biochemistry. 34 (12): 1861–1868. doi:10.1016/S0038-0717(02)00199-2.
  19. ^ a b ADAMS, A.P., SANDAR, N., & NELSON, D.C. (1970). Some properties of soils affecting russet scab and silver scurf of potatoes. Am. Potato J., 47, 49–57.
  20. ^ SINGH, A. (1968). Studies on Helminthosporium solani, the causal organism of silver scurf of potato. PhD Thesis, North Dakota State University, Fargo, ND.
  21. ^ a b Rivera-Varas, Viviana V.; Freeman, Thomas A.; Gudmestad, Neil C.; Secor, Gary A. (2007-09-17). "Mycoparasitism of Helminthosporium solani by Acremonium strictum". Phytopathology. 97 (10): 1331–1337. doi:10.1094/PHYTO-97-10-1331. ISSN 0031-949X. PMID 18943692.
  22. ^ Kurzawinska, Halina, 2006: An interaction of potato crop soil fungi population on fungi responsible for tuber superficial diseases. Journal of Plant Protection Research 46(4): 339-346
  23. ^ Martinez, Carole; Avis, Tyler J.; Simard, Jean-Nicolas; Labonté, Jessica; Bélanger, Richard R.; Tweddell, Russell J. (2006). "The role of antibiosis in the antagonism of different bacteria towards Helminthosporium solani, the causal agent of potato silver scurf". Phytoprotection. 87 (2): 69. doi:10.7202/013975ar.
  24. ^ Franc, Gary. "Silver Scurf of Potato" (PDF). Wyoming Extension. University of Wyoming. Retrieved Oct 21, 2015.
  25. ^ Shetty, Kiran; Franzier, Mary. "Silver Scurf of Potatoes" (PDF). Kimberly Research and Extension Center. University of Idaho. Retrieved Nov 11, 2015.
licença
cc-by-sa-3.0
direitos autorais
Wikipedia authors and editors
original
visite a fonte
site do parceiro
wikipedia EN

Helminthosporium solani: Brief Summary ( Inglês )

fornecido por wikipedia EN
Silver scurf blemishes on a tuber

Silver scurf is a plant disease that is caused by the plant pathogen Helminthosporium solani. Silver scurf is a blemish disease, meaning the effect it has on tubers is mostly cosmetic and affects "fresh market, processing and seed tuber potatoes." There are some reports of it affecting development, meaning growth and tuber yield. This is caused by light brown lesions, which in turn change the permeability of tuber skin and then it causes tuber shrinkage and water loss, which finally causes weight loss. The disease has become economically important because silver scurf affected potatoes for processing and direct consumption have been rejected by the industry. The disease cycle can be divided into two stages: field and storage. It is mainly a seed borne disease and the primary source of inoculum is mainly infected potato seed tubers. Symptoms develop and worsen in storage because the conditions are conducive to sporulation. The ideal conditions for the spread of this disease are high temperatures and high humidity. There are also many cultural practices that favor spread and development. Luckily, there are multiple ways to help control the disease.

licença
cc-by-sa-3.0
direitos autorais
Wikipedia authors and editors
original
visite a fonte
site do parceiro
wikipedia EN

Helminthosporium solani ( Espanhol; Castelhano )

fornecido por wikipedia ES

Helminthosporium solani es un importante hongo patógeno de vegetales como patata.

 title=
licença
cc-by-sa-3.0
direitos autorais
Autores y editores de Wikipedia
original
visite a fonte
site do parceiro
wikipedia ES

Harmaahilse ( Finlandês )

fornecido por wikipedia FI

Harmaahilse on perunan tauti, jonka aiheuttaa Helminthosporium solani -sieni. Taudin oireena ovat perunan mukulan pinnalla olevat hopeanharmaat laikut. Kosteassa laikkuihin muodustuu taudinaiheuttajan mustia itiöitä, jolloin mukulat näyttävät nokisilta. Ruokaperunassa harmaahilse on lähinnä ulkonäköhaitta. Ruokaperunateollisuudessa harmaahilseisten perunoiden nopeampi nahistuminen aiheuttaa tappioita.

Harmaahilse leviää sairaan siemenperunan mukana, mutta taudinaiheuttajan itiöt voivat myös säilyä maassa ainakin seuraavaan kasvukauteen asti. Harmaahilseinen peruna ei idä normaalisti, mikä voi aiheuttaa aukkoisuutta perunakasvustoon. Tauti ei kuitenkaan yleensä alenna merkittävästi sadon määrää.

Harmaahilseen torjunta perustuu terveen siemenperunan käyttöön. Taudin leviämismahdollisuuksia voidaan vähentää sadon nopealla kuivauksella noston jälkeen ja ehkäisemällä veden tiivistyminen perunoiden pintaan varastossa. Harmaahilsettä voidaan torjua myös kemiallisesti siemenperunan peittauksella. Peittauksen tehoaineita voivat olla iprodioni ja imatsaliili.

Lähteet

Aiheesta muualla

Tämä sieniin liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.
licença
cc-by-sa-3.0
direitos autorais
Wikipedian tekijät ja toimittajat
original
visite a fonte
site do parceiro
wikipedia FI

Harmaahilse: Brief Summary ( Finlandês )

fornecido por wikipedia FI

Harmaahilse on perunan tauti, jonka aiheuttaa Helminthosporium solani -sieni. Taudin oireena ovat perunan mukulan pinnalla olevat hopeanharmaat laikut. Kosteassa laikkuihin muodustuu taudinaiheuttajan mustia itiöitä, jolloin mukulat näyttävät nokisilta. Ruokaperunassa harmaahilse on lähinnä ulkonäköhaitta. Ruokaperunateollisuudessa harmaahilseisten perunoiden nopeampi nahistuminen aiheuttaa tappioita.

Harmaahilse leviää sairaan siemenperunan mukana, mutta taudinaiheuttajan itiöt voivat myös säilyä maassa ainakin seuraavaan kasvukauteen asti. Harmaahilseinen peruna ei idä normaalisti, mikä voi aiheuttaa aukkoisuutta perunakasvustoon. Tauti ei kuitenkaan yleensä alenna merkittävästi sadon määrää.

Harmaahilseen torjunta perustuu terveen siemenperunan käyttöön. Taudin leviämismahdollisuuksia voidaan vähentää sadon nopealla kuivauksella noston jälkeen ja ehkäisemällä veden tiivistyminen perunoiden pintaan varastossa. Harmaahilsettä voidaan torjua myös kemiallisesti siemenperunan peittauksella. Peittauksen tehoaineita voivat olla iprodioni ja imatsaliili.

licença
cc-by-sa-3.0
direitos autorais
Wikipedian tekijät ja toimittajat
original
visite a fonte
site do parceiro
wikipedia FI

Helminthosporium solani ( Francês )

fornecido por wikipedia FR
licença
cc-by-sa-3.0
direitos autorais
Auteurs et éditeurs de Wikipedia
original
visite a fonte
site do parceiro
wikipedia FR

Helminthosporium solani: Brief Summary ( Francês )

fornecido por wikipedia FR

Helminthosporium solani est une espèce de champignons ascomycètes de la famille des Massarinaceae.

Ce champignon phytopathogène provoque chez la pomme de terre la maladie de la gale argentée ou « tache argentée ».

licença
cc-by-sa-3.0
direitos autorais
Auteurs et éditeurs de Wikipedia
original
visite a fonte
site do parceiro
wikipedia FR

Helminthosporium solani ( Italiano )

fornecido por wikipedia IT

Helminthosporium solani è un fungo ascomicete parassita delle piante. Provoca la scabbia argentata della patata.

Bibliografia

  • G. Goidanich, La difesa delle piante ortive, Edagricole, Bologna, 1988

 title=
licença
cc-by-sa-3.0
direitos autorais
Autori e redattori di Wikipedia
original
visite a fonte
site do parceiro
wikipedia IT

Helminthosporium solani: Brief Summary ( Italiano )

fornecido por wikipedia IT

Helminthosporium solani è un fungo ascomicete parassita delle piante. Provoca la scabbia argentata della patata.

licença
cc-by-sa-3.0
direitos autorais
Autori e redattori di Wikipedia
original
visite a fonte
site do parceiro
wikipedia IT

Helminthosporium solani ( Szl )

fornecido por wikipedia SZL

Helminthosporium solani je grzib[5], co go ôpisoł Durieu & Mont. 1849. Helminthosporium solani nŏleży do zorty Helminthosporium i familije Massarinaceae.[6][7] Żŏdne podgatōnki niy sōm wymianowane we Catalogue of Life.[6]

Przipisy

  1. Hughes (1953), In: Can. J. Bot. 31(5):631
  2. P.A. Saccardo (1886), In: Syll. fung. (Abellini) 4:428
  3. P.A. Saccardo (1886), In: Syll. 4:483
  4. Harz (1871), In: Bull. Soc. Imp. nat. Moscou 44(1):129
  5. Durieu & Mont. (1849), In: Flora Algéricae 1:356
  6. 6,0 6,1 Bisby F.A., Roskov Y.R., Orrell T.M., Nicolson D., Paglinawan L.E., Bailly N., Kirk P.M., Bourgoin T., Baillargeon G., Ouvrard D. (red.): Species 2000 & ITIS Catalogue of Life: 2019 Annual Checklist.. Species 2000: Naturalis, Leiden, the Netherlands., 2019. [dostymp 2019-09-18].
  7. Species Fungorum. Kirk P.M., 2010-11-23
licença
cc-by-sa-3.0
direitos autorais
Wikipedia authors and editors
original
visite a fonte
site do parceiro
wikipedia SZL

Helminthosporium solani: Brief Summary ( Szl )

fornecido por wikipedia SZL

Helminthosporium solani je grzib, co go ôpisoł Durieu & Mont. 1849. Helminthosporium solani nŏleży do zorty Helminthosporium i familije Massarinaceae. Żŏdne podgatōnki niy sōm wymianowane we Catalogue of Life.

licença
cc-by-sa-3.0
direitos autorais
Wikipedia authors and editors
original
visite a fonte
site do parceiro
wikipedia SZL

Парша серебристая ( Russo )

fornecido por wikipedia русскую Википедию
У этого термина существуют и другие значения, см. Парша.
Дополнительные сведения: Парша картофеля
Царство: Грибы
Подцарство: Высшие грибы
Отдел: Аскомицеты
Подотдел: Pezizomycotina
Порядок: Плеоспоровые
Семейство: Massarinaceae
Вид: Гельминтоспорий паслёновый
Международное научное название

Helminthosporium solani Durieu & Mont., 1848

Commons-logo.svg
Поиск изображений
на Викискладе
NCBI 58128EOL 1029381MB 174113

Парша́ серебри́стаягрибковое заболевание, вызываемое грибами Helminthosporium solani (синонимы Spondylocladium atrovirens, Helminthosporium atrovirens)[1]. Грибница возбудителя распространяется только в клетках кожуры клубня картофеля. Сначала кожура светлая, потом буреющая. Конидиеносцы гриба прямые, цилиндрические, тёмно-оливковые с перегородками, длиной 200 — 600 мкм, толщиной 10 — 15 мкм у основания и 2 — 4 мкм у вершины, конидии расположены в верхней части конидиеносцев мутовками по 2 — 4 в несколько ярусов. Форма конидий обратно-булавовидная с 2 — 8 перегородками, с сужением на вершине, коричневые у основания, на вершине светлые; размеры: длина 10 — 80 мкм, ширина 6 — 12 мкм у основания и 2 — 4 мкм у вершины. После отчленения от конидиеносцев конидии быстро теряют жизнеспособность (через 1 час при +20°С и относительной влажности 90% сохраняются живыми около трети всех конидий, через 24 часа — не более 10%)[2].

Распространение и вредоносность

Болезнь широко распространена. Вредоносность парши серебристой в основном отражается на семенных качествах картофеля. Поражённые клубни ослабляются и приобретают предрасположенность к развитию вторичной инфекции, вызываемой другими патогенами. Через пораженные участки в клубень проникают возбудители сухих и мокрых гнилей. У клубней существенно портится внешний вид. Кроме того, при высадке больные клубни дают слабые, изреженные всходы[3].

Симптомы и жизненный цикл возбудителя болезни

Признаки заболевания возможно выявить на клубнях уже осенью, во время уборки или через некоторое время после закладки их на хранение. Пятна в это время малозаметные, светло-коричневые, без блеска, различной величины и формы. Массовое развитие заболевания происходит к концу хранения, ближе к весне. Поражённая ткань становится слегка вдавленной и имеет хорошо выраженный металлический (серебристый блеск). Образование блеска объясняется тем, что перидерма не позволяет патогену проникнуть внутрь клубня — гриб, распространяясь в слое между перидермой и эпидермисом, отслаивает ткани и обеспечивает доступ воздуха в полости, приобретающие вид серебристых чешуек. На поверхности пятен гриб развивает конидиальное спороношение и мелкие, чёрные склероции. При сильном поражении картофельная кожура начинает сморщиваться, её пропускная способность возрастает, и происходит потеря влаги. Поражения лучше всего заметны весной, на позеленевших клубнях[2].

Распространение гриба в окружающей среде происходит при помощи конидий. В период хранения развитие болезни провоцирует высокая влажность воздуха и повышенная температура. При +15°С образование спор наступает уже через 1 час, при 10°С, а при 5°С — через 2 — 3 часа. При наличии водного конденсата спорам необходимо всего 2 — 6 часов, чтобы образовался новый очаг инфекции. При температуре +3°С развитие и распространение болезни прекращается. Сохраняется инфекция, главным образом, на семенных клубнях. Гриб поражает только клубни, однако не наблюдается прямой связи между размером поражения клубня грибом и заражением полученного урожая. Посадка слабо заражённых клубней приводит к более сильному заражению клубней нового урожая, чем посадка клубней с высокой степенью поражённости, поскольку мицелий, находящийся на сильно заражённых клубнях, ослаблен и образующиеся на нём споры не обладают высокой инфекционностью. Поэтому используемая в настоящее время методика учёта развития серебристой парши не характеризует качество семенного материала.

Меры борьбы

Для борьбы с болезнью необходимо[1]:

  1. Соблюдение севооборота.
  2. Использование для посадки здоровых клубней.
  3. Уборку урожая необходимо проводить своевременно при сухих погодных условиях, необходимо скашивать ботву.
  4. Перед закладкой на хранение необходимо протравливать семенные клубни фунгицидами. Наиболее эффективно протравливание клубней сразу после уборки препаратами ботран, нитрафен, виватакс 200, максим, целест, фундазол, титусим, текто 45.
  5. После закладки на хранение клубни необходимо быстро просушить (за 2 — 4 дня) и создать оптимальные условий для хранения клубней (температура +2…3 °С, невысокая влажность воздуха и наличие вентиляции), не допуская образования конденсата на клубнях.

См. также

Примечания

licença
cc-by-sa-3.0
direitos autorais
Авторы и редакторы Википедии

Парша серебристая: Brief Summary ( Russo )

fornecido por wikipedia русскую Википедию

Парша́ серебри́стая — грибковое заболевание, вызываемое грибами Helminthosporium solani (синонимы Spondylocladium atrovirens, Helminthosporium atrovirens). Грибница возбудителя распространяется только в клетках кожуры клубня картофеля. Сначала кожура светлая, потом буреющая. Конидиеносцы гриба прямые, цилиндрические, тёмно-оливковые с перегородками, длиной 200 — 600 мкм, толщиной 10 — 15 мкм у основания и 2 — 4 мкм у вершины, конидии расположены в верхней части конидиеносцев мутовками по 2 — 4 в несколько ярусов. Форма конидий обратно-булавовидная с 2 — 8 перегородками, с сужением на вершине, коричневые у основания, на вершине светлые; размеры: длина 10 — 80 мкм, ширина 6 — 12 мкм у основания и 2 — 4 мкм у вершины. После отчленения от конидиеносцев конидии быстро теряют жизнеспособность (через 1 час при +20°С и относительной влажности 90% сохраняются живыми около трети всех конидий, через 24 часа — не более 10%).

licença
cc-by-sa-3.0
direitos autorais
Авторы и редакторы Википедии