dcsimg
Image de Tick-borne encephalitis virus

Tick-borne encephalitis virus

FSME-Virus ( allemand )

fourni par wikipedia DE

Das FSME-Virus (FSMEV, wissenschaftlich Tick-borne encephalitis virus, TBEV) ist eine Spezies behüllter einzelsträngiger RNA-Viren positiver Polarität und der Erreger der Frühsommer-Meningoenzephalitis (FSME bzw. TBE). Es handelt sich um ein humanpathogenes Virus aus der Familie der Flaviviridae, Gattung Flavivirus.

Subtypen

Es werden drei Subtypen unterschieden[3].

  • Far Eastern Subtype: Far-Eastern tick-borne encephalitis virus (Far-Eastern TBEV), ehemals Russian-Spring-Summer-Enzephalitis-Virus (RSSEV) – Vorkommen hauptsächlich in Russland, östlich des Urals und in Teilen von China, Japan und Korea. Überträger dieses Subtyps ist Ixodes persulcatus (Taigazecke), die Letalität dieses Subtyps liegt bei bis zu 20 %.
  • Western European Subtype: Western tick-borne encephalitis virus (WTBEV), ehemals Central-European-Encephalitis-Virus (CEEV) – Vorkommen in Zentral-, Ost- und Nord-Europa. Überträger ist Ixodes ricinus (Gemeiner Holzbock), Letalität beträgt bis zu 2 %.[4]
  • Siberian Subtype: Siberian tick-borne encephalitis virus (STBEV), ehemals West-Siberian-Virus – Vorkommen in (West-)Sibirien. Überträger ist Ixodes persulcatus

Die Typuslinie ist der Sofjin strain.[5]

Merkmale

Das Viruskapsid besteht aus drei Strukturproteinen:

  • Envelope-Protein E
  • Core-Protein C
  • Membrane-Protein

Das Glykoprotein E spielt eine zentrale Rolle in der Biologie der Infektion und ist für die Bindung und das Eindringen in die Zielzelle verantwortlich. Es gehört zu den am besten charakterisierten viralen Proteinen überhaupt.

Überträger

Zecken (Ixodida sp.) sind die Hauptvektoren und das Hauptreservoir der FSME. Die Ansteckung erfolgt über Zeckenstiche oder über Rohmilch infizierter Tiere. Die Krankheit selbst wurde erstmals 1931 bei Forstarbeitern aus Neunkirchen beschrieben, der Erreger 1949 isoliert.

Das endemische Auftreten von FSME ist immer mit großen Flüssen assoziiert. Die Gründe dafür sind bis dato unklar.

Systematik

Die Spezies TBEV gehört innerhalb der Gattung Flavivirus zum so genannten Tick-Borne-Enzephalitis-Komplex (TBE)[6], zu dem die neben diesen Erregern der Frühsommer-Meningoenzephalitis auch das Louping-Ill-Virus (Erreger von Louping III, LI), das Kyasanur-Forest-Disease-Virus (Erreger des Kyasanur-Wald-Fiebers, KFD) mit dem Subtyp Al-Khurma-Virus, das Powassan-Virus (Erreger der Powassan-Virus-Enzephalitis, PE), das Omsk-hämorrhagisches-Fieber-Virus (Erreger des Omsker Fiebers), das Langat-Virus, sowie die Erreger der Negeshivirus-Enzephalitis zählen. Die einzelnen Arten sind jeweils auf bestimmte Regionen begrenzt.

Meldepflicht

In Deutschland ist der direkte oder indirekte Nachweis des FSME-Virus namentlich meldepflichtig nach des Infektionsschutzgesetzes (IfSG), soweit der Nachweis auf eine akute Infektion hinweist. Die Meldepflicht betrifft in erster Linie die Leitungen von Laboren ( IfSG).

In der Schweiz ist der positive und negative laboranalytische Befund zu einem Zeckenenzephalitisvirus für Laboratorien meldepflichtig und zwar nach dem Epidemiengesetz (EpG) in Verbindung mit der Epidemienverordnung und der Verordnung des EDI über die Meldung von Beobachtungen übertragbarer Krankheiten des Menschen.

Literatur

  • Oliver Donoso-Mantke, Luidmila S. Karan, Daniel Růžek: Tick-Borne Encephalitis Virus: A General Overview. (Volltext als PDF-Datei Auf: edoc.rki.de; zuletzt abgerufen am 26. November 2016).

Einzelnachweise

  1. a b c d ICTV: ICTV Taxonomy history: Yellow fever virus. - EC 51, Berlin, Germany, July 2019; Email ratification March 2020 (MSL #35)
  2. ICTV Master Species List 2018b.v2. - MSL #34, März 2019.
  3. F. X. Heinz: Tick-borne encephalitis virus: advances in molecular biology and vaccination strategy in the next century. In: International Journal of Medical Microbiology. Band 289, Nr. 5–7, 1999, , S. 506–510. PMID 10652717.
  4. Jesse L. Goodman, David T. Dennis, Daniel E. Sonenshine, et al.: Tick-Borne Encephalitis. In: Tick-Borne Diseases of Humans. ASM Press, Washington, DC 2005, ISBN 978-1-55581-238-6, S. 151.
  5. S, Y. Kovalev, T. A. Mukhacheva, V. S. Kokorev, I. V. Belyaeva: Tick-borne encephalitis virus: reference strain Sofjin and problem of its authenticity. In: Virus Genes. Band 44, Nr. 2, April 2012, S. 217–24. doi:10.1007/s11262-011-0690-9. PMID 22095094.
  6. NCBI: tick-borne encephalitis virus group. Auf: ncbi.nlm.nih.gov; zuletzt abgerufen am 12. Oktober 2020.
 title=
licence
cc-by-sa-3.0
droit d’auteur
Autoren und Herausgeber von Wikipedia
original
visiter la source
site partenaire
wikipedia DE

FSME-Virus: Brief Summary ( allemand )

fourni par wikipedia DE

Das FSME-Virus (FSMEV, wissenschaftlich Tick-borne encephalitis virus, TBEV) ist eine Spezies behüllter einzelsträngiger RNA-Viren positiver Polarität und der Erreger der Frühsommer-Meningoenzephalitis (FSME bzw. TBE). Es handelt sich um ein humanpathogenes Virus aus der Familie der Flaviviridae, Gattung Flavivirus.

licence
cc-by-sa-3.0
droit d’auteur
Autoren und Herausgeber von Wikipedia
original
visiter la source
site partenaire
wikipedia DE

FSME-wiirus ( frison du nord )

fourni par wikipedia emerging languages
Amrum.pngTekst üüb Öömrang FSME-wiirus Tick-Borne Encephalitis Virus.png

FSME wiiren
Abb. A: pH=8,0
Abb. B: pH=10,0
Abb. C: pH=5,4

Süstemaatik Hoodkategorii: Wiiren Kategorii: nian Famile: Flaviviridae Skööl: Flavivirus Slach: FSME-wiirus Taksonomii Genoom: (+)ssRNA Baltimore-klas: Skööl 4 Wedenskapelk nööm Tick-borne encephalitis virus (ingelsk) Ferwisangen

At FSME-wiirus suragt för meningoenzephalitis an hiart tu't famile Flaviviridae.

Hat woort faan tegen (Ixodida slacher) auerdraanj.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

FSME-wiirus: Brief Summary ( frison du nord )

fourni par wikipedia emerging languages

At FSME-wiirus suragt för meningoenzephalitis an hiart tu't famile Flaviviridae.

Hat woort faan tegen (Ixodida slacher) auerdraanj.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors

Tick-borne encephalitis virus ( anglais )

fourni par wikipedia EN

Tick-borne encephalitis virus (TBEV) is a positive-strand RNA virus associated with tick-borne encephalitis in the genus Flavivirus.

Classification

Taxonomy

TBEV is a member of the genus Flavivirus. Other close relatives, members of the TBEV serocomplex, include Omsk hemorrhagic fever virus, Kyasanur Forest disease virus, Alkhurma virus, Louping ill virus and Langat virus.[1]

Subtypes

TBEV has three subtypes:

  • Western European subtype (formerly Central European encephalitis virus, CEEV; principal tick vector: Ixodes ricinus);
  • Siberian subtype (formerly West Siberian virus; principal tick vector: Ixodes persulcatus);
  • Far Eastern subtype (formerly Russian Spring Summer encephalitis virus, RSSEV; principal tick vector: Ixodes persulcatus).[2]

The reference strain is the Sofjin strain.[3]

Virology

Structure

TBEV is a positive-sense single-stranded RNA virus, contained in a 40-60 nm spherical, enveloped capsid.[4] The TBEV genome is approximately 11kb in size, which contains a 5' cap, a single open reading frame with 3' and 5' UTRs, and is without polyadenylation.[4] Like other flaviviruses,[5] the TBEV genome codes for ten viral proteins, three structural, and seven nonstructural (NS).[6][4]

The structural proteins are C (capsid), PrM (premembrane, which is cleaved to produce the final membrane protein, M), and E (envelope). The seven nonstructural proteins are: NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. The role of some nonstructural proteins is known, NS5 serves as RNA-dependent RNA polymerase, NS3 has protease (in complex with NS2B) and helicase activity.[6][4] Structural and nonstructural proteins are not required for the genome to be infectious.[4] All viral proteins are expressed as a single large polyprotein, with the order C, PrM, E, NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5.[6]

Life cycle

Transmission

Infection of the vector begins when a tick takes a blood meal from an infected host. This can occur at any part of the tick's life cycle but a horizontal transmission between infected nymphs and uninfected larvae co-feeding on the same host is thought to be key in maintaining the circulation of TBEV.[7][4] TBEV in the blood of the host infects the tick through the midgut, from where it can pass to the salivary glands to be passed to the next host. In non-adult ticks, TBEV is transmitted transtadially by infecting cells that are not destroyed during molting, thus the tick remains infectious throughout its life.[7] Infected adult ticks may be able to lay eggs that are infected, transmitting the virus transorvarially.[8]

Replication

Replication cycle of tick-borne flaviviruses.

In humans, the infection begins in the skin (with the exception of food-borne cases, about 1% of infections) at the site of the bite of an infected tick, where Langerhans cells and macrophages in the skin are preferentially targeted.[6] TBEV envelope (E) proteins recognize heparan sulfate (and likely other receptors) on the host cell surface and are endocytosed via the clathrin mediated pathway. Acidification of the late endosome triggers a conformational change in the E proteins, resulting in fusion, followed by uncoating, and release of the single-stranded RNA genome into the cytoplasm.[9][4]

The viral polyprotein is translated and inserts into the ER membrane, where it is processed on the cytosolic side by host peptidases and in the lumen by viral enzyme action. The viral proteins C, NS3, and NS5 are cleaved into the cytosol (though NS3 can complex with NS2B or NS4A to perform proteolytic or helicase activity), while the remaining nonstructural proteins alter the structure of the ER membrane. This altered membrane permits the assembly of replication complexes, where the viral genome is replicated by the viral RNA-dependent RNA polymerase, NS5.[9][6]

Newly replicated viral RNA genomes are then packaged by the C proteins while on the cytosolic side of the ER membrane, forming the immature nucleocapsid, and gain E and PrM proteins, arranged as a heterodimer, during budding into the lumen of the ER. The immature virion is spiky and geometric in comparison to the mature particle. The particle passes through the golgi apparatus and trans-golgi network, under increasingly acidic conditions, by which the virion matures with cleavage of the Pr segment from the M protein and formation fusion competent E protein homodimers. Though the cleaved Pr segment remains associated with protein complex until exit.[4][9]

The virus is released from the host cell upon fusion of the transport vesicle with the host cell membrane, the cleaved Pr now segments dissociate, resulting in a fully mature, infectious virus.[4][9] However, partially mature and immature viruses are sometimes released as well; immature viruses are noninfectious as the E proteins are not fusion competent, partially mature viruses are still capable of infection.[9]

Pathogenesis and immune response

IFN evasion strategies of Tick-borne encephalitis virus (TBEV).

With the exception of food-borne cases, infection begins in the skin at the site of the tick bite. Skin dendritic (or Langerhans) cells (DCs) are preferentially targeted.[6] Initially, the virus replicates locally and immune response is triggered when viral components are recognized by cytosolic pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs).[10] Recognition causes the release of cytokines including interferons (IFN) α, β , and γ and chemokines, attracting migratory immune cells to the site of the bite.[6] The infection may be halted at this stage and cleared, before the onset of noticeable symptoms. Notably, tick saliva enhances infection by modulating host immune response, dampening apoptotic signals.[10] If the infection continues, migratory DCs and macrophages become infected and travel to the local draining lymph node where activation of polymorphonuclear leukocytes, monocytes and the complement system are activated.[10]

The draining lymph node can also serve as a viral amplification site, from where TBEV gains systemic access. This viremic stage corresponds to the first symptomatic phase in the prototypical biphasic pattern of tick-borne encephalitis.[4] TBEV has a strong preference for neuronal tissue, and is neuroinvasive.[11] The initial viremic stage allows access to a number of the preferential tissues. However, the exact mechanism by which TBEV crosses into the central nervous system (CNS) is unclear.[11][10][8][4] There are several proposed mechanism for TBEV breaching the blood-brain barrier (BBB): 1)The "Trojan Horse" mechanism, whereby TBEV gains access to the CNS while infecting an immune cell that passes through the BBB;[10][6][11] 2) Disruption and increased permeability of the BBB by immune immune cytokines;[11] 3) Via infection of the olfactory neurons;[6] 4) Via retrograde transport along peripheral nerves to the CNS;[6] 5) Infection of the cells that make up part of the BBB.[6][10]

CNS infection brings on the second phase in the classic biphasic infection pattern associated with the European subtype. CNS disease is immunopathological; release of inflammatory cytokines coupled with the action of cytotoxic CD8+ T cells and possibly NK cells results in inflammation and apoptosis of infected cells that is responsible for many of the CNS symptoms.[10][11]

Humoral response

TBEV specific IgM and IgG antibodies are produced in response to infection.[4] IgM antibodies appear and peak first, as well as reaching higher levels, and typically dissipate in about 1.5 months post infection, though there exists considerable variation from patient to patient. IgG levels peak at about 6 weeks after the appearance of CNS symptoms, then decline slightly but do not dissipate, likely conferring life long immunity to the patient.[4][6]

Evolution

The ancestor of the extant strains appears to have separated into several clades approximately 2750 years ago.[12] The Siberian and Far Eastern subtypes diverged about 2250 years ago. A second analysis suggests an earlier date of evolution (3300 years ago) with a rapid increase in the number of strains starting around 300 years ago.[13] Different strains of the virus have been transmitted at least three times into Japan between 260–430 years ago.[14][15] The strains circulating in Latvia appear to have originated from both Russia and Western Europe[16] while those in Estonia appear to have originated in Russia.[17] The Lithuanian strains appear to be related to those from Western Europe.[18] Phylogenetic analysis indicates that the European and Siberian TBEV sub-types are closely related while the Far-eastern sub-type is closer to the Louping Ill Virus.[1] However, in antigenic relatedness, based on the E, NS3, and NS5 proteins, all three sub-types are highly similar, and Louping Ill virus is the closest relative outside the collective TBEV group.[19]

History

Though the first description of what may have been TBE appears in records in the 1700s in Scandinavia,[11] identification of the TBEV virus occurred in the Soviet Union in the 1930s.[20] The investigation began due to an outbreak of what was believed to be Japanese Encephalitis ("Summer encephalitis"), among Soviet troops stationed along the border with the Japanese empire (present day People's Republic of China), near the Far Eastern city of Khabarovsk. The expedition was led by virologist Lev A. Zilber, who assembled a team of twenty young scientists in a number of related fields such as acarology, microbiology, neurology, and epidemiology.[21][20] The expedition arrived in Khabarovsk on May 15, 1937, and divided into squads, Northern-led by Elizabeth N. Levkovich and working in the Khabarovski Krai- and Southern-led by Alexandra D. Sheboldaeva, working in the Primorski Krai.[20]

Inside the month of May, the expedition had identified ticks as the likely vector, collected I. persucatus ticks by exposure of bare skin by entomologist Alexander V. Gutsevich and virologist Mikhail P. Chumakov had isolated the virus from ticks feeding on intentionally infected mice. During the summer, five expeditions members became infected with TBEV, and while there were no fatalities, three of the five suffered damaging sequelae.[20]

The expedition returned in mid-August and in October of 1937 Zilber and Sheboldova were arrested, falsely accused of spreading Japanese encephalitis. Expedition epidemiologist Tamara M. Safonov, was arrested the following January for protesting the charges against Zilber and Sheboldova. As a consequence of the arrests, one of the important initial works was published under the authorship of expedition acarologist, Vasily S. Mironov. Zilber was released in 1939 and managed to restore, along with Sheboldova, co-authorship on this initial work; however, Safanov and Sheboldova (who was not released) spent 18 years in labor camps.[20][21]

References

  1. ^ a b Mansfield KL, Johnson N, Phipps LP, Stephenson JR, Fooks AR, Solomon T (August 2009). "Tick-borne encephalitis virus - a review of an emerging zoonosis". The Journal of General Virology. 90 (Pt 8): 1781–1794. doi:10.1099/vir.0.011437-0. PMID 19420159.
  2. ^ Goodman JL, Dennis DT, Sonenshine DE (2005). "Tick-Borne Encephalitis". Tick-Borne Diseases of Humans. Washington, DC: ASM Press. p. 151. ISBN 978-1-55581-238-6.
  3. ^ Kovalev SY, Mukhacheva TA, Kokorev VS, Belyaeva IV (April 2012). "Tick-borne encephalitis virus: reference strain Sofjin and problem of its authenticity". Virus Genes. 44 (2): 217–24. doi:10.1007/s11262-011-0690-9. PMID 22095094. S2CID 12587373.
  4. ^ a b c d e f g h i j k l m Mansfield, K. L.; Johnson, N.; Phipps, L. P.; Stephenson, J. R.; Fooks, A. R.; Solomon, T. (2009-08-01). "Tick-borne encephalitis virus – a review of an emerging zoonosis". Journal of General Virology. 90 (8): 1781–1794. doi:10.1099/vir.0.011437-0. ISSN 0022-1317. PMID 19420159.
  5. ^ Wilder-Smith, Annelies; Ooi, Eng-Eong; Horstick, Olaf; Wills, Bridget (January 2019). "Dengue". The Lancet. 393 (10169): 350–363. doi:10.1016/s0140-6736(18)32560-1. ISSN 0140-6736. PMID 30696575. S2CID 208789595.
  6. ^ a b c d e f g h i j k l Ruzek, Daniel; Avšič Županc, Tatjana; Borde, Johannes; Chrdle, Ales; Eyer, Ludek; Karganova, Galina; Kholodilov, Ivan; Knap, Nataša; Kozlovskaya, Liubov; Matveev, Andrey; Miller, Andrew D. (2019-04-01). "Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines". Antiviral Research. 164: 23–51. doi:10.1016/j.antiviral.2019.01.014. ISSN 0166-3542. PMID 30710567. S2CID 73414822.
  7. ^ a b Labuda, M.; Jones, L. D.; Nuttall, P. A.; Kaufman, W. R. (1994). "Adaptations of arboviruses to ticks". Journal of Medical Entomology. 31 (1): 1–9. doi:10.7939/r3m03xx77. PMID 8158611. Retrieved 2020-04-17.
  8. ^ a b Danielová, Vlasta; Holubová, Jaroslava; Pejcoch, Milan; Daniel, Milan (2002). "Potential significance of transovarial transmission in the circulation of tick-borne encephalitis virus". Folia Parasitologica. 49 (4): 323–325. doi:10.14411/fp.2002.060. ISSN 0015-5683. PMID 12641208.
  9. ^ a b c d e Pulkkinen, Lauri; Butcher, Sarah; Anastasina, Maria (2018-06-28). "Tick-Borne Encephalitis Virus: A Structural View". Viruses. 10 (7): 350. doi:10.3390/v10070350. ISSN 1999-4915. PMC 6071267. PMID 29958443.
  10. ^ a b c d e f g Velay, Aurélie; Paz, Magali; Cesbron, Marlène; Gantner, Pierre; Solis, Morgane; Soulier, Eric; Argemi, Xavier; Martinot, Martin; Hansmann, Yves; Fafi-Kremer, Samira (2019-07-04). "Tick-borne encephalitis virus: molecular determinants of neuropathogenesis of an emerging pathogen". Critical Reviews in Microbiology. 45 (4): 472–493. doi:10.1080/1040841X.2019.1629872. ISSN 1040-841X. PMID 31267816. S2CID 195787988.
  11. ^ a b c d e f Blom, Kim; Cuapio, Angelica; Sandberg, J. Tyler; Varnaite, Renata; Michaëlsson, Jakob; Björkström, Niklas K.; Sandberg, Johan K.; Klingström, Jonas; Lindquist, Lars; Gredmark Russ, Sara; Ljunggren, Hans-Gustaf (2018). "Cell-Mediated Immune Responses and Immunopathogenesis of Human Tick-Borne Encephalitis Virus-Infection". Frontiers in Immunology. 9: 2174. doi:10.3389/fimmu.2018.02174. ISSN 1664-3224. PMC 6168641. PMID 30319632.
  12. ^ Subbotina EL, Loktev VB (2012). "[Molecular evolution of the tick-borne encephalitis and Powassan viruses]". Molekuliarnaia Biologiia. 46 (1): 82–92. doi:10.1134/S0026893311060148. PMID 22642104. S2CID 18500235.
  13. ^ Uzcátegui NY, Sironen T, Golovljova I, Jääskeläinen AE, Välimaa H, Lundkvist Å, et al. (April 2012). "Rate of evolution and molecular epidemiology of tick-borne encephalitis virus in Europe, including two isolations from the same focus 44 years apart". The Journal of General Virology. 93 (Pt 4): 786–796. doi:10.1099/vir.0.035766-0. PMID 22205716.
  14. ^ Suzuki Y (June 2007). "Multiple transmissions of tick-borne encephalitis virus between Japan and Russia". Genes & Genetic Systems. 82 (3): 187–95. doi:10.1266/ggs.82.187. PMID 17660689.
  15. ^ Takashima I, Hayasaka D, Goto A, Kariwa H, Mizutani T (February 2001). "Epidemiology of tick-borne encephalitis (TBE) and phylogenetic analysis of TBE viruses in Japan and Far Eastern Russia". Japanese Journal of Infectious Diseases. 54 (1): 1–11. PMID 11326122.
  16. ^ Vene S, Golovljova I, Mavtchoutko V, Forsgren M, Kalnina V, Plyusnin A (December 2001). "Characterization of tick-borne encephalitis virus from Latvia: evidence for co-circulation of three distinct subtypes". Journal of Medical Virology. 65 (4): 730–5. doi:10.1002/jmv.2097. PMID 11745938. S2CID 22860154.
  17. ^ Golovljova I, Vene S, Sjölander KB, Vasilenko V, Plyusnin A, Lundkvist A (December 2004). "Characterization of tick-borne encephalitis virus from Estonia". Journal of Medical Virology. 74 (4): 580–8. doi:10.1002/jmv.20224. PMID 15484275. S2CID 28491834.
  18. ^ Mickiené A, Vene S, Golovljova I, Laiskonis A, Lindquist L, Plyusnin A, Lundkvist A (December 2001). "Tick-borne encephalitis virus in Lithuania". European Journal of Clinical Microbiology & Infectious Diseases. 20 (12): 886–8. doi:10.1007/s10096-001-0637-5. PMID 11837641. S2CID 38061544.
  19. ^ Heinz, Franz-Xaver; Stiasny, Karin (2019). "Chapter 2b: The molecular and antigenic structure of TBEV". Tick-borne Encephalitis - the Book. doi:10.33442/978-981-14-0914-1_2b. ISSN 2661-3980. S2CID 150118109.
  20. ^ a b c d e Zlobin, Vladimir I.; Pogodina, Vanda V.; Kahl, Olaf (2017-10-01). "A brief history of the discovery of tick-borne encephalitis virus in the late 1930s (based on reminiscences of members of the expeditions, their colleagues, and relatives)". Ticks and Tick-borne Diseases. 8 (6): 813–820. doi:10.1016/j.ttbdis.2017.05.001. ISSN 1877-959X. PMID 28526419.
  21. ^ a b Uspensky, Igor (May 2018). "Several words in addition to "A brief history of the discovery of tick-borne encephalitis virus in the late 1930s" by V.I. Zlobin, V.V. Pogodina and O. Kahl (TTBDIS, 2017, 8, 813–820)". Ticks and Tick-borne Diseases. 9 (4): 834–835. doi:10.1016/j.ttbdis.2018.03.007. PMID 29559213.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors
original
visiter la source
site partenaire
wikipedia EN

Tick-borne encephalitis virus: Brief Summary ( anglais )

fourni par wikipedia EN

Tick-borne encephalitis virus (TBEV) is a positive-strand RNA virus associated with tick-borne encephalitis in the genus Flavivirus.

licence
cc-by-sa-3.0
droit d’auteur
Wikipedia authors and editors
original
visiter la source
site partenaire
wikipedia EN

Virus de la encefalitis por garrapatas ( espagnol ; castillan )

fourni par wikipedia ES

El virus de la encefalitis por garrapatas (TBEV, Tick-Borne Encephalitis-virus) es un virus ARN monocatenario positivo transmitido por garrapatas, del género Flavivirus, de la familia Flaviviridae, grupo IV orden sin clasificar, que causa la encefalitis transmitida por garrapatas.[1]

Referencias

  1. Mansfield, K. L.; Johnson, N.; Phipps, L. P.; Stephenson, J. R.; Fooks, A. R.; Solomon, T.YR 2009. «Tick-borne encephalitis virus – a review of an emerging zoonosis». Journal of General Virology 90 (8): 1781-1794. ISSN 1465-2099. doi:10.1099/vir.0.011437-0. Consultado el 12 de noviembre de 2021.

 title=
licence
cc-by-sa-3.0
droit d’auteur
Autores y editores de Wikipedia
original
visiter la source
site partenaire
wikipedia ES

Virus de la encefalitis por garrapatas: Brief Summary ( espagnol ; castillan )

fourni par wikipedia ES

El virus de la encefalitis por garrapatas (TBEV, Tick-Borne Encephalitis-virus) es un virus ARN monocatenario positivo transmitido por garrapatas, del género Flavivirus, de la familia Flaviviridae, grupo IV orden sin clasificar, que causa la encefalitis transmitida por garrapatas.​

licence
cc-by-sa-3.0
droit d’auteur
Autores y editores de Wikipedia
original
visiter la source
site partenaire
wikipedia ES

Puukentsefaliidi viirus ( estonien )

fourni par wikipedia ET

Puukentsefaliidi viirus ( tick-borne encephalitis virus;lüh TBEV) on viiruseliik Flaviviridae sugukonnas.

Alamtüübid

Puukentsefaliidi viirus liigitatakse RNA-viiruste hulka ja sellel tunnistatakse järgmiseid alatüüpe:

  • Western European subtype (varem Central European encephalitis virus, CEEV; puugivektor: Ixodes ricinus);
  • Siberian subtype (varem West Siberian virusSiberi alam-tüüpi viirus; puugivektor: Ixodes persulcatus);
  • Far Eastern subtype (varem Russian Spring Summer encephalitis virus, RSSEV; puugivektor: Ixodes persulcatus).

Patogeensus

Viirust seostatakse puukentsefaliidiga.

Siberi alam-tüüpi viiruse patogeensus

Siberi alam-tüüpi viirus võib põhjustada puugihammustuse järgselt vastuvõtlikel inimestel Siberi alatüübi puukentsefaliidi vormi Siberi entsefaliiti, mis võib lõppeda surmaga ja millel ei ole veel ravi leitud.

Siberi entsefaliidi juhtumeid on diagnoositud Soomes kokku ligi 20 ning on esinenud ka surmajuhtumeid.[1]

Viited

  1. Triinu Laan, Soomes levib eriti ohtlik puugihaigus, millele puudub ravi, Maaleht.ee, 18. mai 2015, veebiversioon (tarve 16.07.2015)

Kirjandus

licence
cc-by-sa-3.0
droit d’auteur
Vikipeedia autorid ja toimetajad
original
visiter la source
site partenaire
wikipedia ET

Puukentsefaliidi viirus: Brief Summary ( estonien )

fourni par wikipedia ET

Puukentsefaliidi viirus ( tick-borne encephalitis virus;lüh TBEV) on viiruseliik Flaviviridae sugukonnas.

licence
cc-by-sa-3.0
droit d’auteur
Vikipeedia autorid ja toimetajad
original
visiter la source
site partenaire
wikipedia ET

Virus de la méningoencéphalite à tiques

fourni par wikipedia FR

Le Virus de la méningoencéphalite à tiques, VMET (en anglais : Tick-borne Encephalitis Virus, TBEV) est un virus à ARN monocaténaire de polarité positive (groupe IV de la classification Baltimore) appartenant à la famille des Flaviviridae et au genre Flavivirus, principalement responsable de l'encéphalite à tiques.

Dans la même famille on trouve également le virus de la fièvre hémorragique d'Omsk, celui de la fièvre de Kyasanur, le virus Alkhurma, le virus louping ill (responsable de l’encéphalite virale ovine[2]) et le virus de Langat.

Le VMET est endémique sur le nord de l'Eurasie (de la zone frontalière de l'est de la France à l'Europe centrale, de l'Ouest de la Sibérie jusqu'en Extrême Orient et au Japon). Le nombre de cas d'encéphalites à tiques est estimé à près de dix mille cas mondiaux par an.

Structure

Il s’agit d’un virus enveloppé à ARN simple brin non-segmenté de sens positif et de symétrie icosaédrique.

Son génome code une polyprotéine de structure (SP) et sept protéines non structurales[3]. Le virus EBV est sphérique, son diamètre est de 50 nm, soit 1/20e de micromètre, il est constitué d'une enveloppe virale qui protège un virion d'ARN associé à une protéine structurale « C ». L'enveloppe externe est porteuse de deux protéines, « M » et « E », la seconde étant impliquée dans l'immunogénicité et l'identification du virus.

Son ARN est séquencé depuis 1989.

Réplication

L'assemblage des virus EBV est complexe, se déroulant en plusieurs stades de maturation. La plupart de ces étapes ont été étudiées sur des cellules de mammifères, et l'on a peu de données sur celles de tiques[3].

Les virions matures s'attachent aux récepteurs de membrane de la cellule cible, et la pénètrent le plus souvent par endocytose. La réplication du génome s'effectue dans les membranes du réticulum endoplasmique, et les nouvelles protéines virales sont synthétisées par les ribosomes.

Les virions immatures sont transportés dans l'appareil de Golgi pour effectuer leur maturation (changement de structure de la protéine M). Cette maturation n'est pas toujours complète, ce qui amène à la production de virions à différents stades : immatures, partiellement matures et complètement matures. Les virions immatures ne sont pas infectieux (incapables de fusion avec une cellule cible), mais les virions matures (en partie ou complètement) peuvent entamer un nouveau cycle infectieux[3].

La production de formes partiellement matures (hétérogènes du point de vue structurel et antigénique) a été interprétée comme une stratégie d'échappement immunitaire, et une façon de s'adapter à de nouvelles cellules-cibles (de tissus plus variés)[3].

Transmission et épidémiologie

Le VMET est endémique sur le nord de l'Eurasie (zone frontalière de la région de Strasbourg à l'Europe centrale, et jusqu'au Japon en passant par la Sibérie).

Les réservoirs de virus sont les tiques elles-mêmes (transmission verticale de la femelle à sa descendance), et de nombreuses espèces de mammifères sauvages (petits rongeurs, renards, sangliers, cerfs..) et domestiques (chèvres, vaches, moutons et chiens)[4].

Le virus VMET est habituellement transmis par piqûre de tiques infectées du genre Ixodes, mais il existe aussi une contamination par produits laitiers non pasteurisés provenant d'animaux domestiques infectés[3].

En Europe, la prévalence du virus chez les tiques Ixodes ricinus varie entre 0,1 et 1,2% selon les pays et les zones étudiées[4]. Le nombre de cas humains d'encéphalites à tiques est estimé à près de dix mille cas mondiaux par an[3], ou de 5 000 à 13 000 cas[5].

L'incidence des encéphalites à tiques est en augmentation, probablement liée au réchauffement climatique (surabondance de tiques par allongement de leur période d'activité et extension de leur habitat)[3].

Il existe un vaccin efficace, mais trop peu utilisé par les groupes à risques[3]. En France, cette vaccination n'est pas recommandée pour les résidents (la maladie est très rare en France), elle peut l'être pour les voyageurs séjournant, au printemps et en été, en zone forestière d'Europe centrale et de l'est[5].

Sous-types

Le VMET possède trois sous-types (caractéristiques cliniques et épidémiologiques)[3],[6],[7] :

  • Le sous-type d'Europe occidentale (anciennement virus de l'encéphalite d’Europe centrale). La tique vectrice principale est Ixodes ricinus Cette encéphalite a un taux de mortalité de 0,5-2% et un risque de séquelles neurologiques de 10%.
  • Le sous-type sibérien (anciennement virus de l’ouest de la Sibérie). La tique vectrice principale est Ixodes persulcatus. Le risque de mortalité est de 2-3%

Les variations génétiques entre ces sous-types sont faibles (de 2,2% à 5,6% pour la séquence d'acides aminés de la protéine de structure), ce qui pourrait aider à déterminer des facteurs de virulence expliquant les différences cliniques[3].

Malgré les progrès réalisés au début du XXIe siècle par la recherche sur les flavivirus, et une meilleure compréhension du VEMT, il reste encore de nombreuses inconnues sur son cycle de vie. En particulier, les facteurs des virulence responsables des différences cliniques entre sous-types de virus n'ont pas été identifiés, de même, le développement du virus chez les tiques a été peu étudié[3].

Notes et références

  1. (en) « Virus Taxonomy: 2018b Release », ICTV, juillet 2018 (consulté le 25 juillet 2019).
  2. « Louping ill » [PDF], Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, 5 août 2005
  3. a b c d e f g h i j et k Lauri I. A. Pulkkinen, Sarah J. Butcher et Maria Anastasina, « Tick-Borne Encephalitis Virus: A Structural View », Viruses, vol. 10, no 7,‎ 28 juin 2018 (ISSN , PMID , PMCID , DOI , lire en ligne, consulté le 2 septembre 2019)
  4. a et b Gérard Duvallet, Entomologie médicale et vétérinaire, Quae - IRD, 2017 (ISBN 978-2-7099-2376-7), p. 580-582.
  5. a et b « Encéphalite à tiques », sur vaccination-info-service.fr, 19 juin 2019 (consulté le 2 septembre 2019)
  6. Lindgren E, Tälleklint L, Polfeldt T, « Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus », Environ. Health Perspect., vol. 108, no 2,‎ 2000, p. 119–23 (PMID , DOI )
  7. (en) Jesse L. Goodman, David T. Dennis et Daniel E. Sonenshine, Tick-Borne Diseases of Humans, Washington, DC, ASM Press, 2005 (ISBN 978-1-55581-238-6, LCCN ), « Tick-Borne Encephalitis », p. 151
  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé .

licence
cc-by-sa-3.0
droit d’auteur
Auteurs et éditeurs de Wikipedia
original
visiter la source
site partenaire
wikipedia FR

Virus de la méningoencéphalite à tiques: Brief Summary

fourni par wikipedia FR

Le Virus de la méningoencéphalite à tiques, VMET (en anglais : Tick-borne Encephalitis Virus, TBEV) est un virus à ARN monocaténaire de polarité positive (groupe IV de la classification Baltimore) appartenant à la famille des Flaviviridae et au genre Flavivirus, principalement responsable de l'encéphalite à tiques.

Dans la même famille on trouve également le virus de la fièvre hémorragique d'Omsk, celui de la fièvre de Kyasanur, le virus Alkhurma, le virus louping ill (responsable de l’encéphalite virale ovine) et le virus de Langat.

Le VMET est endémique sur le nord de l'Eurasie (de la zone frontalière de l'est de la France à l'Europe centrale, de l'Ouest de la Sibérie jusqu'en Extrême Orient et au Japon). Le nombre de cas d'encéphalites à tiques est estimé à près de dix mille cas mondiaux par an.

licence
cc-by-sa-3.0
droit d’auteur
Auteurs et éditeurs de Wikipedia
original
visiter la source
site partenaire
wikipedia FR

Virus krpeljnog meningoencefalitisa ( Croate )

fourni par wikipedia hr Croatian

Virus krpeljnog meningoencefalitisa je RNK virus uzročnik bolesti krpeljni meningoencefalitis, koji pripada porodici flavivirusa (lat. Flaviviridae).

Serološki se mogu razlikovati dva podtipa virusa krpeljnog meningoencefalitisa: srednjoeuropski podtip i dalekoistočni podtip. Oba tipa mogu uzrokovati bolest.


P biology.svg Nedovršeni članak Virus krpeljnog meningoencefalitisa koji govori o biologiji treba dopuniti. Dopunite ga prema pravilima Wikipedije.

licence
cc-by-sa-3.0
droit d’auteur
Autori i urednici Wikipedije
original
visiter la source
site partenaire
wikipedia hr Croatian

Virus della encefalite trasmessa da zecche ( italien )

fourni par wikipedia IT

I virus della encefalite trasmessa da zecche (Tick-borne encephalitis virus, TBEV) sono una specie di arbovirus della famiglia Flaviviridae, genere Flavivirus, appartiene al IV gruppo dei virus a ((+) ssRNA). Esso è associato alla encefalite virale trasmessa dalle zecche.

Il virus fa parte dei flavivirus patogeni per l'uomo.[1]

Virologia

Questo virus ha un genoma a singolo filamento di RNA positivo ((ss) (+) RNA], esso può essere distinto in tre sottotipi:[2]

  1. Sottotipo dell'Estremo Oriente: Presente principalmente in Russia ad est degli Urali e in alcune parti della Cina, Giappone e Corea, portatori di questo sottotipo è Ixodes persulcatus, la letalità di questo sottotipo arriva fino al 20%.
  2. Sottotipo occidentale: Presente in Europa centrale, orientale e Nord Europa, vettore è Ixodes ricinus, la letalità arriva fino al 2%
  3. Sottotipo Siberiano Presente in siberia, vettore è Ixodes persulcatus;

Il capside virale è composto di tre proteine strutturali :

  • proteine di rivestimento E
  • proteina del core C
  • proteina di membrana

La glicoproteina E svolge un ruolo centrale nella biologia delle infezioni ed è responsabile del legame e della penetrazione nella cellula bersaglio.

Altri virus assimilabili trasmessi da zecche sono:

Vettori

Le zecche vettore appartengono tipicamente a generi della famiglia Ixodidae (zecche dure):

Le zecche oltre che vettori sono anche serbatoi di riserva del virus in grado di garantirne la persistenza nell’ambiente oltre il periodo di attività della zecca tramite la trasmissione transovarica (l'infezione si trasmette attraverso le uova dalla madre alla prole), transtadiale (da larva a ninfe e / o da ninfe ad adulto), per co-feeding (zecca che effettua il pasto di sangue accanto ad un’altra infetta)i . L'uomo è il principale ospite terminale insieme a piccoli animali selvatici, per lo più roditori, che sono ospiti comuni.[3][4]

I piccoli mammiferi come i roditori sono ospiti e danno una virus amplificazione per il loro alto tasso riproduttivo. Gli esseri umani sono infettati sporadicamente, sia da una puntura di zecca o per l'ingestione di latte non pastorizzato o suoi prodotti lattiero-caseari.[5][6][7][8][9] Altri mammiferi (ad esempio ruminanti) possono anche essere infettati, ma il più delle volte non mostrano segni clinici.[10]

Clinica

I virus provocano encefaliti, con una fase iniziale con febbre, mal di testa e mialgia. Nei casi più gravi segue dopo circa una settimana dalla apparente guarigione clinica una seconda fase della malattia con meningoencefalite o mielite. Questa ultima tende a causare paralisi flaccida dell'arto superiore e della spalla dei muscoli respiratori. Il coinvolgimento bulbare (tronco cerebrale) porta ad insufficienza respiratoria e quindi la morte.[3] Si ritrova nel liquido cerebrospinale la presenza di neutrofili, con una leucocitosi periferica indicativo di meningite.[3]

Note

  1. ^ Gould EA, Solomon T, Pathogenic flaviviruses, in Lancet, vol. 371, n. 9611, 2008, pp. 500-9, DOI:10.1016/S0140-6736(08)60238-X, PMID 18262042.
  2. ^ Lindquist L, Vapalahti O, Tick-borne encephalitis, in Lancet, vol. 371, n. 9627, 2008, pp. 1861-71, DOI:10.1016/S0140-6736(08)60800-4, PMID 18514730.
  3. ^ a b c Solomon T, Mallewa M, Dengue and other emerging flaviviruses, in J. Infect., vol. 42, n. 2, 2001, pp. 104-15, DOI:10.1053/jinf.2001.0802, PMID 11531316.
  4. ^ (EN) Transmission | Tick-borne Encephalitis (TBE) | CDC, su www.cdc.gov. URL consultato il 14 luglio 2018.
  5. ^ (EN) Neda Hudopisk, Miša Korva e Evgen Janet, Tick-borne Encephalitis Associated with Consumption of Raw Goat Milk, Slovenia, 2012, in Emerging Infectious Diseases, vol. 19, n. 5, 2013-05, DOI:10.3201/eid1905.121442. URL consultato il 14 luglio 2018.
  6. ^ Heidemarie Holzmann, Stephan W. Aberle e Karin Stiasny, Tick-borne encephalitis from eating goat cheese in a mountain region of Austria, in Emerging Infectious Diseases, vol. 15, n. 10, 2009-10, pp. 1671-1673, DOI:10.3201/eid1510.090743. URL consultato il 14 luglio 2018.
  7. ^ Danielle K. Offerdahl, Niall G. Clancy e Marshall E. Bloom, Stability of a Tick-Borne Flavivirus in Milk, in Frontiers in Bioengineering and Biotechnology, vol. 4, 11 maggio 2016, DOI:10.3389/fbioe.2016.00040. URL consultato il 14 luglio 2018.
  8. ^ Brockmann SO, Oehme R, Buckenmaier T, Beer M, Jeffery-Smith A, Spannenkrebs M, Haag-Milz S, Wagner-Wiening C, Schlegel C, Fritz J, Zange S, Bestehorn M, Lindau A, Hoffmann D, Tiberi S, Mackenstedt U, Dobler G, A cluster of two human cases of tick-borne encephalitis (TBE) transmitted by unpasteurised goat milk and cheese in Germany, May 2016, in Euro Surveill., vol. 23, n. 15, April 2018, DOI:10.2807/1560-7917.ES.2018.23.15.17-00336, PMC 6836198, PMID 29667575.
  9. ^ Markovinović L, Kosanović Ličina ML, Tešić V, Vojvodić D, Vladušić Lucić I, Kniewald T, Vukas T, Kutleša M, Krajinović LC, An outbreak of tick-borne encephalitis associated with raw goat milk and cheese consumption, Croatia, 2015, in Infection, vol. 44, n. 5, October 2016, pp. 661-5, DOI:10.1007/s15010-016-0917-8, PMID 27364148.
  10. ^ Valarcher JF, Hägglund S, Juremalm M, Blomqvist G, Renström L, Zohari S, Leijon M, Chirico J, Tick-borne encephalitis, in Rev. - Off. Int. Epizoot., vol. 34, n. 2, 2015, pp. 453-66, PMID 26601448.

Bibliografia

Testi

Riviste

 title=
licence
cc-by-sa-3.0
droit d’auteur
Autori e redattori di Wikipedia
original
visiter la source
site partenaire
wikipedia IT

Virus della encefalite trasmessa da zecche: Brief Summary ( italien )

fourni par wikipedia IT

I virus della encefalite trasmessa da zecche (Tick-borne encephalitis virus, TBEV) sono una specie di arbovirus della famiglia Flaviviridae, genere Flavivirus, appartiene al IV gruppo dei virus a ((+) ssRNA). Esso è associato alla encefalite virale trasmessa dalle zecche.

Il virus fa parte dei flavivirus patogeni per l'uomo.

licence
cc-by-sa-3.0
droit d’auteur
Autori e redattori di Wikipedia
original
visiter la source
site partenaire
wikipedia IT

Virus klopnega meningoencefalitisa ( espagnol ; castillan )

fourni par wikipedia SL

Virus klopnega meningoencefalitisa (virus KME) je flavivirus, ki ga prenašajo klopi[1] in povzroča klopni meningoencefalitis. V naravi kroži virus med klopi, ki so glavni prenašalci virusa, in gozdnimi sesalci, ki so glavni gostitelji virusa.[2] V Sloveniji so virus našli pri okoli 0,5 % klopov in 6 % malih glodavcev (v večjem deležu pri rovkah kot pri miših).[3]

Podtipi

Poznamo tri podtipe virusa KME:[3][4]

  • evropskega – prenaša ga klop Ixodes ricinus,
  • sibirskega – prenaša ga klop Ixodes persulcatus,
  • daljnovzhodnega – poimenovan tudi virus ruskega pomladno-poletnega meningoencefalitisa, prenaša ga klop Ixodes persulcatus.

Značilnosti

Virusi KME so okrogli enovijačni RNK-virusi iz rodu Flavivirus in družine Flaviviridae. Genom nosi zapis za tri strukturne beljakovine (C, prM in E) in sedem nestrukturnih beljakovin (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5).[3][5] Beljakovina C (angl. capside protein) tvori virusno kapsido, ta pa je obdana z lipidnim dvoslojem, ki vsebuje beljakovini prM (precursor M protein) in E (envelope protein). Beljakovina E predstavlja najpomembnejši virusni antigen in sodeluje pri vezavi virusa na (še neznan) receptor na gostiteljevi celici ter vstop vanjo.[5]

Sklici

  1. http://www.termania.net/slovarji/slovenski-medicinski-slovar/5544035/virus?query=virus&SearchIn=All, Slovenski medicinski e-slovar, vpogled: 29. 5. 2016.
  2. http://www.nijz.si/sites/www.nijz.si/files/uploaded/kme_in_zivila_4.8.2015_popravki_na_sestanku_9.9.2015.pdf, vpogled: 29. 5. 2016.
  3. 3,0 3,1 3,2 Strle F. Klopni meningoencefalitis. V: Tomažič J., Strle F s sod. Infekcijske bolezni. Ljubljana 2014/2015, str. 224–228.
  4. Goodman, Jesse L.; Dennis, David T. & Sonenshine, Daniel E. (2005). "Tick-Borne Encephalitis". Tick-Borne Diseases of Humans. Washington, DC: ASM Press. str. 151. ISBN 1-55581-238-4.
  5. 5,0 5,1 Lindquist L., Vapalahti O. Tick-borne encephalitis. The Lancet. 2008. Vol. 371, št. 9627: 1861-1871.
licence
cc-by-sa-3.0
droit d’auteur
Avtorji in uredniki Wikipedije
original
visiter la source
site partenaire
wikipedia SL

Virus klopnega meningoencefalitisa: Brief Summary ( espagnol ; castillan )

fourni par wikipedia SL

Virus klopnega meningoencefalitisa (virus KME) je flavivirus, ki ga prenašajo klopi in povzroča klopni meningoencefalitis. V naravi kroži virus med klopi, ki so glavni prenašalci virusa, in gozdnimi sesalci, ki so glavni gostitelji virusa. V Sloveniji so virus našli pri okoli 0,5 % klopov in 6 % malih glodavcev (v večjem deležu pri rovkah kot pri miših).

licence
cc-by-sa-3.0
droit d’auteur
Avtorji in uredniki Wikipedije
original
visiter la source
site partenaire
wikipedia SL

Вирус клещевого энцефалита ( russe )

fourni par wikipedia русскую Википедию
 src=
Строение эктодомена белка Е оболочки вириона вируса клещевого энцефалита
Planned section.svg
Этот раздел статьи ещё не написан.
Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться раздел, посвящённый строению вириона ВКЭ.
Вы можете помочь проекту, написав этот раздел. Эта отметка установлена 31 июля 2016 года.

Примечания

  1. Таксономия вирусов (англ.) на сайте Международного комитета по таксономии вирусов (ICTV).
  2. Goodman, Jesse L.; Dennis, David T. & Sonenshine, Daniel E. Tick-Borne Encephalitis // Tick-Borne Diseases of Humans. — Washington, DC: ASM Press, 2005. — P. 151. — ISBN 1-55581-238-4.
  3. S. Y. Kovalev, T. A. Mukhacheva, V. S. Kokorev and I. V. Belyaeva. Tick-borne encephalitis virus: reference strain Sofjin and problem of its authenticity (англ.) // Virus Genes. — 2012. — Vol. 44, no. 2. — P. 217—224. — ISSN 1572-994X. — DOI:10.1007/s11262-011-0690-9. — PMID 22095094.
  4. N. Y. Uzcátegui, T. Sironen, I. Golovljova, A. E. Jääskeläinen, H. Välimaa1, Å. Lundkvist, A. Plyusnin, A. Vaheri, and O. Vapalahti. Rate of evolution and molecular epidemiology of tick-borne encephalitis virus in Europe, including two isolations from the same focus 44 years apart (англ.) // Journal of General Virology. — 2012. — Vol. 93, no. 4. — P. 786—796. — ISSN 1465-2099. — DOI:10.1099/vir.0.035766-0. — PMID 22205716.
  5. 1 2 Субботина Е. Л., Локтев В. Б. Молекулярная эволюция вируса клещевого энцефалита и вируса Повассан (рус.) // Молекулярная биология. — 2012. — Т. 46, № 1. — С. 82—92. — ISSN 0026-8984.
  6. Suzuki Y. Multiple transmissions of tick-borne encephalitis virus between Japan and Russia (англ.) // Genes & Genetic Systems. — 2007. — Vol. 82, no. 3. — P. 187—195. — ISSN 1880-5779. — DOI:10.1266/ggs.82.187.
  7. Å. Lundkvist, S. Vene, I. Golovljova, V. Mavtchoutko, M. Forsgren, V. Kalnina, A. Plyusnin. Characterization of tick-borne encephalitis virus from Latvia: evidence for co-circulation of three distinct subtypes (англ.) // Journal of Medical Virology. — 2001. — Vol. 65, no. 4. — P. 187—195. — ISSN 1096-9071. — DOI:10.1002/jmv.2097.
  8. I. Golovljova, S. Vene, K.B. Sjölander, V. Vasilenko, A. Plyusnin, Å. Lundkvist. Characterization of tick-borne encephalitis virus from Estonia (англ.) // Journal of Medical Virology. — 2004. — Vol. 74, no. 4. — P. 580—588. — ISSN 1096-9071. — DOI:10.1002/jmv.20224.
  9. A. Mickiené, S. Vene, I. Golovljova, A. Laiškonis, L. Lindquist, A. Plyusnin and Å. Lundkvist. Tick-borne encephalitis virus in Lithuania (англ.) // European Journal of Clinical Microbiology & Infectious Diseases. — 2001. — Vol. 20, no. 12. — P. 886—888. — ISSN 1435-4373. — DOI:10.1007/s10096-001-0637-5.
 title=
licence
cc-by-sa-3.0
droit d’auteur
Авторы и редакторы Википедии