dcsimg
Imagem de Dinophysis sacculus
Nome não resolvido

Dinoflagellata

Dinoflagelate ( Bósnia )

fornecido por wikipedia emerging languages

Dinoflagelati (lat. Dinoflagellata; od grč. δῖνος - dinos = viri + lat. flagellum = bič) ili svjetleći bičari su protisti, jednoćelijski eukarioti koji čine koljeno Dinoflagellata.[1] To je grupa fitoplanktonskih organizama koji imaju karakteristično ćelijsko jedro i dva međusobno okomito postavljena biča. Uglavnom su oklopljeni celuloznim oklopom, no postoje i neoklopljeni oblici.

Pregled

Dinoflagelate su pretežno planktonski organizmi, iako su poznati i neki bentoski predstavnici koji mogu biti sesilni ili pužu po podlozi. Najveći dio ovih organizama živi u moru, ali ih nalazimo i u slatkoj vodi. Najzastupljeniji su u toplim morima, a u temperiranim su morima brojniji u toplijem dijelu godine. Određujemo ih prema obliku i položaju pojasa, te veličini stanice. Oklopljeni oblici raspoznaju se prema broju i rasporedu celuloznih ploča periplasta.[1]

Obično se smatraju algama; dinoflagelati su uglavnom morski plankton, ali su česti i u slatkovodnim staništima. Njihova se populacija distribuira ovisno o temperaturi mora, salinitetu ili dubini. Za mnoge dinoflagelate se zna da su fotosintetski, ali veliki dio njih su u stvari miksotrofi, kombinirajući fotosintezu s gutanjem plijena (fagotrofija i mizocitoza).[2][3]

Najčešće se razmnožavaju binarnom diobom, a imaju i spolno razmnožavanje gametima koje obično završava stvaranjem spora. Među dinoflagelatnim otrovima najčešći su oni koji djeluju na nervni sistem organizama. Postoje dvije osnovne kategorije toksina, sa PSP i NSP tipovima trovanja. Dinoflagelati imaju važno mjesto u evoluciji jer postoje pretpostavke da su jedan od prijelaznih stadija od biljnog ka životinjskom svijetu.

Brzo nakupljanje određenih dinoflagelata može rezultirati vidljivom obojenošću vode, kolokvijalno poznatom kao crvena plima (štetno cvjetanje algi), koja može uzrokovati trovanje školjkama ako ljudi jedu kontaminirane primjerke. Neki dinoflagelati takođe ispoljavaju bioluminiscenciju – pretežno emitiraujući plavo-zelenu svetlost.

Morfologija

 src=
Longitudinalni (l.f.) i poprečni bič (t.f.), vrećasti mjehurić (s.p.) i jedro (n).
 src=
Anatomija dinoflagelata

Dinoflagelati su jednoćelijski i posjeduju dva različita biča koji izlaze iz ventralne strane ćelije (dinokontna-flagelacija). Imaju trakasti poprečni bič s više valova koji polazi iz lijevog dijela ćelije i konvencionalniji, koji zamahuje straga.[4][5][6] Poprečna flagela je valovita vrpca u kojoj samo vanjski rub visi od osnove do vrha, uslijed djelovanja aksoneme koja se pruža duž njega. Aksonemni rub ima jednostavne dlačice koje mogu biti različitih dužina. Papučarsko kretanje ima prijednji pogon, a također i silu okretanja. Uzdužni bič je relativno konvencionalnog izgleda, s malo ili nimalo dlaka. Udara sa samo jednim ili dva perioda talasanja. Flagela leži u površinskim utorima: poprečnog biča u cingulumu i uzdužnom udubljenju, iako njegov distalni dio slobodno stoji iza ćelije. Kod dinoflagelatnih vrsta s dezmokontskim flagelacijama (npr. Prorocentrum), dvije flagele razlikuju se kao u dinokontima, ali nisu povezane s utorima.

Dinoflagelati imaju složenu ćeliju prekrivenu „amfiezmom“ ili korteksom, sastavljenu od niza membrana, spljoštenih vezikula nazvanih alveolama (= amfiesmne vezikule) i srodnih struktura.[7][8] U oklopnim dinoflagelatima, ove nosače prekrivaju celulozne ploče da bi stvorile neku vrstu oklopa nazvanog teka ili lorika, za razliku od atekatnih dinoflagelata. Javljaju se u različitim oblicima i rasporedima, ovisno o vrsti i ponekad i stadija dinoflagelata. Konvencijski, termin tabulacija je korišten da se označi ovim rasporedom tabula (ploča). Konfiguracija ploča može se označiti tikine ploče ili formulom tabulacije. Kod mnogig postoje vlaknaste ekstrusomske takođe se nalaze u mnogim oblicima. Zajedno s raznim drugim strukturnim i genetičkim detaljima, ova organizacija ukazuje na bliski odnos između dinoflagelata, Apicomplexa i Cilliata, koji se zajedno nazivaju Alveolata [9]

Tabule dinoflagelata mogu se grupirati u šest "vrsta tabula": gimnodinoida, suesoida, goniaulakoida, peridinioida, nanoceratopsioida, dinofizioida i prorocentroida.

Hloroplasti u većini fotosintetskih dinoflagelata vežu tri membrane , što sugerira da su vjerovatno izvedene iz nekih progutanih algi. Većina fotosintetskih vrsta sadrži hlorofil a i c2, karotenoidni beta-karoten i grupu ksantofila za koje se čini da su jedinstveni za dinoflagelate, tipski peridinin, dinoksantin i diadinoksantin. Ovi pigmenti daju mnogim dinoflagelatima prepoznatljivu zlatno smeđu boju. Međutim, dinoflagelati Karenia brevis, Karenia mikimotoi, i Karlodinium micrum stekli su druge pigmente kroz endosimbiozu, uključujući fukoksantin.[10]

Ovo sugerira da su njihovi hloroplasti bili nastali u nekoliko endosimbiotskih događaja koji su uključivali već obojene ili sekundarno bezbojne oblike. Otkriće plastida u Apicomplexa dovelo je do zaključaka da su naslijeđeni od predaka zajedničkog za ove dvije skupine, ali nijedna od baznijih linija nema ih.

Isto tako, ćelija dinoflagelata sastoji se od češćih organela kao što su grubi i glatki endoplazmatski retikulum, Golgijev aparat, mitohondrije, zrna lipida i škroba, ihranjive vakuole. Neki su čak pronađeni s organelom osjetljivom na svjetlost, očnom mrljom ili stigmom ili većim jedrom koje sadrži istaknuti nukleolus. Dinoflagelatni rod Erythropsidium ima najmanje poznato „oko“.[11]

Neke vrste atekata (bez teke) imaju unutrašnji skelet koji se sastoji od dva silikozna elementa poput zvijezda koji imaju nepoznatu funkciju, a mogu se naći kao mikrofosili. Tappan[12] dao je pregled dinoflagelata sa unutrašnjim skeletom. Ovo uključuje prvi detaljni opis pentastera u Actiniscus pentasterias, temeljen na skenirajućoj elektronskoj mikroskopiji. Postavljeni su unutar reda Gymnodiniales, podred Actiniscineae.

Struktura i formacija teke

Formiranje ljuske se detaljno proučava ultrastrukturnim studijama.[8]

Jedro dinoflagelata: dinokarion

Jezgarni dinoflagelati (Dinokaryota) imaju svojstven oblik jedra, nazvan dinokarion, u kojem su hromosomi vezani za nuklearnu membranu . Imaju smanjeni broj histona. Umjesto histona, jedra dinoflagelata sadrže novu, dominantnu porodicu nuklearnih proteina za koje se čini da su virusnog porijekla, pa se nazivaju dinoflagelatni / virusni nukleoproteini (DVNP) koji su visoko bazni, vežu DNK sa sličnim afinitetom histone i javljaju se u multiplim posttranslacijskim modifikacijama oblika.[13] Jedra dinoflagelata ostaju kondenzirana tokom interfaze, a ne samo tokom mitoze, koja je zatvorena i uključuje jedinstveno vanuklearno mitotsko vreteno.[14]

Ova vrsta jedra nekada se smatrala posrednikom između nukleoidne regije prokariots i pravih jedara eukariota, pa su nazvane mezokariotskim, ali sada se smatraju naprednijim, a ne primitivnim osobinama. Pored dinokariota, DVNP mogu se naći u grupi bazalnih dinoflagelata (poznatih kao morske alveolate , "MALV") koji se granaju kao sestrinske dinokariote (Syndiniales)[15]

Genomika

Jedna od najupečatljivijih karakteristika dinoflagelata je velika količina ćelijske DNK. Većina eukariotskih algi u prosjeku sadrži oko 0,54 pg DNK /ćelija, dok se procjene sadržaja DNK dinoflagelata kreću u rasponu od 3 do 250 pg po ćeliji.[14] što odgovara otprilike 3000–215 000 Mb (za poređenje, haploidni genom čovjeka iznosi 3180 Mb, a kosd heksaploidne pšenice roda Triticum 16 000 Mb). Poliploidija ili polinetija mogu pridonijeti velikom sadržaju ćelijske DNK,[16] ali ranija istraživanja kinetike resocijacije DNK i nedavne analize genoma ne podržavaju ovu hipotezu.[17] To se, hipotetski, pripisuje rastućoj retropoziciji u dinoflagelatnim genima.[18][19]

Osim nesrazmjerno velikih genoma, dinoflagelatna jedfra jedinstvena su i po svojoj morfologiji, regulaciji i sastavu. Njihova DNK toliko je čvrsto upakirana da je još uvijek neizvjesno koliko imaju hromosoma.[20]

Dinoflagelate dijele neobičnu organizaciju mitohondrijskog genoma sa srodnicima, Apicomplexa.[21] Obje skupine imaju vrlo smanjene mitohondrijske genome (oko 6 kilobaza (kb) u Apicomplexa, prema ~ 16 kb za mitohondrije čovjeka). Jedna vrsta, "Amoebophrya ceratii", potpuno je izgubila mitohondrijski genom, a još uvijek ima funkcionalne mitohondrije.[22]

Geni u genomima dinoflagelata su prošli niz reorganizacija, uključujući masovno umnožavanje i rekombinaciju genoma, što je rezultiralo u višestrukim kopijama svakog gena i fragmenata gena povezanih u brojne kombinacije. Došlo je do gubitka standardnih stop kodona, trans-spajanja iRNK i iRNK cox3, prerade i opsežnog RNK editiranja većine gena.[23][24] Razlozi ove transformacije su nepoznati. U maloj grupi dinoflagelata, nazvanih „dinotomi“ (Durinskia) i Kryptoperidinium), endosimbionti (dijatomeje) i dalje imaju mitohondrije, što ih čini jedinim organizmima s dvije evolucijski različite mitohondrije. U većini vrsta, plastidni genom sastoji se od samo 14 gena.[25]

Plastidna DNK kod dinoflagelata koji sadrže peridinin nalazi se u nizu malih krugova. Svaki krug sadrži jedan ili dva polipeptidna gena. Geni za ove polipeptide su specifični za hloroplast jer su njihovi homolozi iz drugih fotosintetskih eukariota isključivo kodirani u genomu hloroplasta. Unutar svakog kruga je prepoznatljiva regija 'jezgra'. Geni su uvijek u istoj orijentaciji u odnosu na ovu jezgrenu regiju.[26]

U smislu DNK barkodiranja, za identifikaciju ITS se mogu koristiti sekvence vrsta, pri čemu se za ograničavanje vrsta može upotrijebiti genetička udaljenost od p≥0,04.[27][28][29]

Evolucijska historija

Dinoflagelati su uglavnom predstavljeni kao fosili dinocista, koji imaje dug geološke zapis, sa pojavama najmanje tokom srednjeg trijasa,[30] whilst geochemical markers suggest a presence to the Early Cambrian.[31]

Neki dokazi ukazuju na dinosteroide u mnogim stijenama paleozoika i prekambrija koji mogu biti proizvod dinoflagelatnih predaka (protodinoflagelata).[32][33]

Molekularna filogenetika pokazuje da su dinoflagelati grupirani s cilijatima i apikompleksi ma (= Sporozoa) u dobro poduprtom kladusu, Alveolata. Čini se da su "Perkinsus, Parvilucifera"] i "Oxyrrhis najbliži srodnici dinokariotskih dinoflagelata apikompleksi.[34] Molecular phylogenies are similar to phylogenies based on morphology.[35]

Čini se da u najranijim fazama evolucije dinoflagelata dominiraju parazitske loze, poput perkinida i sindinija (npr. Amoebophrya i Hematodinium ).[36][37][38][39]

Sve dinoflagelate imaju plastide crvenih algi ili ostatke (nefosintskih) organela porijekla od crvenih algi.[40] Parazitski dinoflagelat Hematodinium ipak nema u potpuni plastid.[41] Neke skupine koje su izgubile fotosintetska svojstva svojih originalnih plastida crvenih algi stekle su nove fotosintetske plastide (hloroplaste) kroz takozvanu serijsku endosimbiozu, sekundarnu i tercijarnu. Kao i njihovi originalni plastidi, novi hloroplasti iz ovih skupina mogu se pratiti do crvenih algi, osim onih u rodu Lepidodinium, koji ima plastide dobijene iz zelenih algi, možda Trebouxiophyceae ili Ulvophyceae.[42][43] Linije s tercijarnom endosimbiozom su dinofiza, sa plastidima iz Cryptomonadina,[44] Karenia, Karlodinium i Takayama, koje imaju plastide haplofitbog porijekla, te Peridiniaceae, Durinskia i Kryptoperidinium, koji imaju plastide iz diatomeja.[45][46] Kod nekih vrsta također javlja se kleptoplastija.[47]

Evolucija dinoflagelata sažeta je u pet glavnih organizacijskih tipova: prorocentroid, dinofizoid, goniaulakoid, peridinioid i teretanodinoid.[48] Tranzicija morskih vrsta u slatku vodu rijetki su događaji tokom diversifikacije dinoflagelata i u većini slučajeva nisu se dogodili u posljednje vrijeme, vjerojatno već od krede.[49] Nedavno je đtkriven „živi fosil“ Dapsilidinium pastielsii, nastanjen u indo-pacifičkom toplom bazenu, koji je služio kao redugij za termofilne dinoflagelate.[50]

Klasifikacija

Thomas Cavalier-Smith sa suradnicima nekoliko puta je mijenjao poziciju dinoflagelata u supergrupi heterokonta:[51][52]:

  • Domen: Eukaryota
  • Carstvo: Protista
  • Podcarstvo: Biciliata
  • Infracarstvo: Alveolata
  • Koljeno: Myzozoa
  • Potkoljeno: Dinozoa
  • Infrakoljeno: Dinoflagellata
  • Superrazred - Dinokaryota

Pored navedenog, koriste se i alternativne sistematike, prema John o. Corlissu iz 1984. i Cavalier-Smithu iz 1993.[1].

Filogenija

Prema više izvora, zabilježene su slijedeće filogenetske veze i odb+nosi dinoflagelata:[53]

Dinoflagellata

Ellobiopsea

       

Oxyrrhea

   

Syndiniales

       

Noctiluciphyceae

   

Dinophyceae

       

Galerija

Također pogledajte

Reference

  1. ^ a b Fensome RA, Taylor RJ, Norris G, Sarjeant WA, Wharton DI, Williams GL (1993). A classification of living and fossil dinoflagellates. Micropaleontology Special Publication. 7. Hanover PA: Sheridan Press. OCLC 263894965.
  2. ^ Stoecker DK (1999). "Mixotrophy among Dinoflagellates". The Journal of Eukaryotic Microbiology. 46 (4): 397–401. doi:10.1111/j.1550-7408.1999.tb04619.x.
  3. ^ Esser, Karl; Lüttge, Ulrich; Beyschlag, Wolfram; Murata, Jin (6. 12. 2012). Progress in Botany: Genetics Physiology Systematics Ecology. ISBN 9783642188190.
  4. ^ Taylor FJR (mart 1975). "Non-helical transverse flagella in dinoflagellates". Phycologia. 14: 45–7. doi:10.2216/i0031-8884-14-1-45.1.
  5. ^ Leblond PH, Taylor FJ (april 1976). "The propulsive mechanism of the dinoflagellate transverse flagellum reconsidered". Bio Systems. 8 (1): 33–9. doi:10.1016/0303-2647(76)90005-8. PMID 986199.CS1 održavanje: koristi se parametar authors (link)
  6. ^ Gaines G, Taylor FJ (maj 1985). "Form and function of the dinoflagellate transverse flagellum". J. Protozool. 32 (2): 290–6. doi:10.1111/j.1550-7408.1985.tb03053.x.
  7. ^ Morrill LC, Loeblich AR (1983). Ultrastructure of the dinoflagellate amphiesma. International Review of Cytology. 82. str. 151–80. doi:10.1016/s0074-7696(08)60825-6. ISBN 9780123644824. PMID 6684652.CS1 održavanje: koristi se parametar authors (link)
  8. ^ a b Netzel H, Dürr G (2. 12. 2012). Ch. 3: Dinoflagellate cell cortex. str. 43–106. ISBN 9780323138130. In Spector 1984
  9. ^ Cavalier-Smith T (1991). "Cell diversification in heterotrophic flagellates". u Patterson D, Larsen J (ured.). The biology of free-living heterotrophic flagellates. Systematics Association Publications. 45. Clarendon Press. str. 113–131. ISBN 978-0198577478.
  10. ^ Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (oktobar 2004). "Dinoflagellates: a remarkable evolutionary experiment". American Journal of Botany. 91 (10): 1523–34. doi:10.3732/ajb.91.10.1523. PMID 21652307.
  11. ^ Schwab IR (septembar 2004). "You are what you eat". The British Journal of Ophthalmology. 88 (9): 1113. doi:10.1136/bjo.2004.049510. PMC 1772300. PMID 15352316.
  12. ^ Tappan H (1980). The Paleobiology of Plant Protists. Geology. W.H. Freeman. ISBN 978-0716711094.
  13. ^ Gornik SG, Ford KL, Mulhern TD, Bacic A, McFadden GI, Waller RF (decembar 2012). "Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates". Current Biology. 22 (24): 2303–12. doi:10.1016/j.cub.2012.10.036. PMID 23159597.
  14. ^ a b Spector D (2. 12. 2012). Dinoflagellate nuclei. str. 107–147. ISBN 9780323138130. In Spector 1984
  15. ^ Strassert JF, Karnkowska A, Hehenberger E, Del Campo J, Kolisko M, Okamoto N, Burki F, Janouškovec J, Poirier C, Leonard G, Hallam SJ, Richards TA, Worden AZ, Santoro AE, Keeling PJ (januar 2018). "Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates". The ISME Journal (Submitted manuscript). 12 (1): 304–308. doi:10.1038/ismej.2017.167. PMC 5739020. PMID 28994824.CS1 održavanje: koristi se parametar authors (link)
  16. ^ Beam CA, Himes M (2. 12. 2012). Ch. 8: Dinoflagellate genetics. str. 263–298. ISBN 9780323138130. In Spector 1984
  17. ^ Lin S, Cheng S, Song B et al. (2015). "The genome of Symbiodinium kawagutii illuminates dinoflagellate gene expression and coral symbiosis". Science. 350: 691–694. doi:10.1126/science.aad0408. Izričita upotreba et al. u: |authors= (pomoć)CS1 održavanje: koristi se parametar authors (link)
  18. ^ Song B, Morse D, Song Y, et al. (2017). "Comparative genomics reveals two major bouts of gene retroposition coinciding with crucial periods of Symbiodinium evolution". Genome Biology and Evolution. 9 (8): 2037–2047. doi:10.1093/gbe/evx144. PMID 28903461.
  19. ^ Hou Y, Ji N, Zhang H, et al. (2018). "Genome size-dependent PCNA gene copy number in dinoflagellates and molecular evidence of retroposition as a major evolutionary mechanism". Journal of Phycology. 55: 37–46. doi:10.1111/jpy.12815.
  20. ^ "Understanding relationship break-ups to protect the reef". ScienceDaily. Pristupljeno 16. 5. 2019.
  21. ^ Jackson CJ, Gornik SG, Waller RF (2012). "The mitochondrial genome and transcriptome of the basal dinoflagellate Hematodinium sp.: character evolution within the highly derived mitochondrial genomes of dinoflagellates". Genome Biology and Evolution. 4 (1): 59–72. doi:10.1093/gbe/evr122. PMC 3268668. PMID 22113794.
  22. ^ John, Uwe; Lu, Yameng; Wohlrab, Sylke; Groth, Marco; Janouškovec, Jan; Kohli, Gurjeet S.; Mark, Felix C.; Bickmeyer, Ulf; Farhat, Sarah (april 2019). "An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome". Science Advances (jezik: engleski). 5 (4): eaav1110. Bibcode:2019SciA....5.1110J. doi:10.1126/sciadv.aav1110. ISSN 2375-2548. PMC 6482013. PMID 31032404.
  23. ^ Lin S, Zhang H, Spencer D, Norman J, Gray M (2002). "Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates". Journal of Molecular Biology. 320 (4): 727–739. doi:10.1016/S0022-2836(02)00468-0. PMID 12095251.
  24. ^ Lin S, Zhang H, Gray MW (2018). RNA editing in dinoflagellates and its implications for the evolutionary history of the editing machinery. In: Smmith H (ed) RNA and DNA editing: Molecular Mechanisms and Their Integration into Biological Systems. John Wiley & Sons Inc. str. 280–309.
  25. ^ Das, Biplab (2019). "Marine parasite survives without key genes". Nature Middle East. doi:10.1038/nmiddleeast.2019.63.
  26. ^ The endosymbiotic origin, diversification and fate of plastids - NCBI
  27. ^ Laatsch T, Zauner S, Stoebe-Maier B, Kowallik KV, Maier UG (juli 2004). "Plastid-derived single gene minicircles of the dinoflagellate Ceratium horridum are localized in the nucleus". Molecular Biology and Evolution. 21 (7): 1318–22. doi:10.1093/molbev/msh127. PMID 15034134.
  28. ^ Stern RF, Andersen RA, Jameson I, Küpper FC, Coffroth MA, Vaulot D, Le Gall F, Véron B, Brand JJ, Skelton H, Kasai F, Lilly EL, Keeling PJ (2012). "Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker". PLOS ONE. 7 (8): e42780. Bibcode:2012PLoSO...742780S. doi:10.1371/journal.pone.0042780. PMC 3420951. PMID 22916158.
  29. ^ Litaker RW, Vandersea MW, Kibler SR, Reece KS, Stokes NA, Lutzoni FM, Yonish BA, West MA, Black MN, Tester PA (april 2007). "Recognizing dinoflagellate species using ITS rDNA sequences". J. Phycol. 43 (2): 344–355. doi:10.1111/j.1529-8817.2007.00320.x.
  30. ^ MacRae RA, Fensome RA, Williams GL (1996). "Fossil dinoflagellate diversity, originations, and extinctions and their significance". Can. J. Bot. 74 (11): 1687–94. doi:10.1139/b96-205. ISSN 0008-4026.CS1 održavanje: koristi se parametar authors (link)
  31. ^ Moldowan JM, Talyzina NM (august 1998). "Biogeochemical evidence for dinoflagellate ancestors in the early cambrian". Science. 281 (5380): 1168–70. Bibcode:1998Sci...281.1168M. doi:10.1126/science.281.5380.1168. PMID 9712575.CS1 održavanje: koristi se parametar authors (link)
  32. ^ Moldowan JM, Dahl JE, Jacobson SR, Huizinga BJ, Fago FJ, Shetty R, Watt DS, Peters KE (februar 1996). "Chemostratigraphic reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellates with Pre-Triassic ancestors". Geology. 24 (2): 159–162. Bibcode:1996Geo....24..159M. doi:10.1130/0091-7613(1996)024<0159:CROBME>2.3.CO;2.
  33. ^ Talyzina NM, Moldowan JM, Johannisson A, Fago FJ (januar 2000). "Affinities of early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers". Rev. Palaeobot. Palynol. 108 (1–2): 37–53. doi:10.1016/S0034-6667(99)00032-9.CS1 održavanje: koristi se parametar authors (link)
  34. ^ Saldarriaga J; Taylor MFJR; Cavalier-Smith T; Menden-Deuer S; Keeling PJ (2004). "Molecular data and the evolutionary history of dinoflagellates". Eur J Protistol. 40 (1): 85–111. doi:10.1016/j.ejop.2003.11.003. hdl:2429/16056.
  35. ^ Fensome RA, Saldarriaga JF, Taylor FJ (1999). "Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies". Grana. 38 (2–3): 66–80. doi:10.1080/00173139908559216.CS1 održavanje: koristi se parametar authors (link)
  36. ^ Gunderson JH, Goss SH, Coats DW (1999). "The phylogenetic position of Amoebophrya sp. infecting Gymnodinium sanguineum". The Journal of Eukaryotic Microbiology. 46 (2): 194–7. doi:10.1111/j.1550-7408.1999.tb04603.x. PMID 10361739.
    Gunderson JH, John SA, Boman WC, Coats DW (2002). "Multiple strains of the parasitic dinoflagellate Amoebophrya exist in Chesapeake Bay". The Journal of Eukaryotic Microbiology. 49 (6): 469–74. doi:10.1111/j.1550-7408.2002.tb00230.x. PMID 12503682.CS1 održavanje: koristi se parametar authors (link)
  37. ^ López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (februar 2001). "Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton". Nature. 409 (6820): 603–7. Bibcode:2001Natur.409..603L. doi:10.1038/35054537. PMID 11214316.CS1 održavanje: koristi se parametar authors (link)
  38. ^ Moon-van der Staay SY, De Wachter R, Vaulot D (februar 2001). "Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity". Nature. 409 (6820): 607–10. Bibcode:2001Natur.409..607M. doi:10.1038/35054541. PMID 11214317.CS1 održavanje: koristi se parametar authors (link)
  39. ^ Saldarriaga JF, Taylor FJ, Keeling PJ, Cavalier-Smith T (septembar 2001). "Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements". Journal of Molecular Evolution. 53 (3): 204–13. Bibcode:2001JMolE..53..204S. doi:10.1007/s002390010210. PMID 11523007.CS1 održavanje: koristi se parametar authors (link)
  40. ^ Janouskovec J, Horák A, Oborník M, Lukes J, Keeling PJ (juni 2010). "A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids". Proceedings of the National Academy of Sciences of the United States of America. 107 (24): 10949–54. Bibcode:2010PNAS..10710949J. doi:10.1073/pnas.1003335107. PMC 2890776. PMID 20534454.CS1 održavanje: koristi se parametar authors (link)
  41. ^ Gornik SG, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z, McConville MJ, Bacic A, McFadden GI, Pain A, Waller RF (maj 2015). "Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate". Proceedings of the National Academy of Sciences of the United States of America. 112 (18): 5767–72. Bibcode:2015PNAS..112.5767G. doi:10.1073/pnas.1423400112. PMC 4426444. PMID 25902514.
  42. ^ Dorrell, R. G.; Howe, C. J. (2015). "Integration of plastids with their hosts: Lessons learned from dinoflagellates". Proceedings of the National Academy of Sciences of the United States of America. 112 (33): 10247–10254. Bibcode:2015PNAS..11210247D. doi:10.1073/pnas.1421380112. PMC 4547248. PMID 25995366.
  43. ^ Tørresen, Ole Kristian (2010). "Investigating the plastid replacement in the green dinoflagellate Lepidodinium chlorophorum". hdl:10852/11559. Cite journal zahtijeva |journal= (pomoć)
  44. ^ The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts
  45. ^ Klinger, C. M.; Paoli, L.; Newby, R. J.; Wang, M. Y.; Carroll, H. D.; Leblond, J. D.; Howe, C. J.; Dacks, J. B.; Bowler, C.; Cahoon, A. B.; Dorrell, R. G.; Richardson, E. (2018). "Plastid Transcript Editing across Dinoflagellate Lineages Shows Lineage-Specific Application but Conserved Trends". Genome Biology and Evolution. 10 (4): 1019–1038. doi:10.1093/gbe/evy057. PMC 5888634. PMID 29617800.
  46. ^ Imanian, B.; Keeling, P. J. (2007). "The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages". BMC Evolutionary Biology. 7: 172. doi:10.1186/1471-2148-7-172. PMC 2096628. PMID 17892581.
  47. ^ Gast, R. J.; Moran, D. M.; Dennett, M. R.; Caron, D. A. (2007). "Kleptoplasty in an Antarctic dinoflagellate: Caught in evolutionary transition?". Environmental Microbiology. 9 (1): 39–45. doi:10.1111/j.1462-2920.2006.01109.x. PMID 17227410.
  48. ^ Taylor FJ (1980). "On dinoflagellate evolution". Bio Systems. 13 (1–2): 65–108. doi:10.1016/0303-2647(80)90006-4. PMID 7002229.
  49. ^ Logares R, Shalchian-Tabrizi K, Boltovskoy A, Rengefors K (decembar 2007). "Extensive dinoflagellate phylogenies indicate infrequent marine-freshwater transitions". Molecular Phylogenetics and Evolution. 45 (3): 887–903. doi:10.1016/j.ympev.2007.08.005. PMID 17928239.CS1 održavanje: koristi se parametar authors (link)
  50. ^ Mertens KN, Takano Y, Head MJ, Matsuoka K (2014). "Living fossils in the Indo-Pacific warm pool: A refuge for thermophilic dinoflagellates during glaciations". Geology. 42 (6): 531–534. Bibcode:2014Geo....42..531M. doi:10.1130/G35456.1.
  51. ^ and E. E. Chao, Protalveolate phylogeny and systematics and the origins of Sporozoa and dinoflagellates (phylum Myzozoa nom. nov.), Europ. J. Protistol. 40, 185-212 (2004)
  52. ^ Thomas Cavalier-Smith, Protist phylogeny and the high-level classification of Protozoa, Europ. J. Protistol. 39, 338-348 (2003).
  53. ^ Orr RJS, Murray SA, Stu¨ken A, Rhodes L, Jakobsen KS (2012) When Naked Became Armored: An Eight-Gene Phylogeny Reveals Monophyletic Origin of Theca in Dinoflagellates. PLoS ONE 7(11): e50004. doi:10.1371/journal.pone.005000

licença
cc-by-sa-3.0
direitos autorais
Autori i urednici Wikipedije
original
visite a fonte
site do parceiro
wikipedia emerging languages

Dinoflagelate: Brief Summary ( Bósnia )

fornecido por wikipedia emerging languages

Dinoflagelati (lat. Dinoflagellata; od grč. δῖνος - dinos = viri + lat. flagellum = bič) ili svjetleći bičari su protisti, jednoćelijski eukarioti koji čine koljeno Dinoflagellata. To je grupa fitoplanktonskih organizama koji imaju karakteristično ćelijsko jedro i dva međusobno okomito postavljena biča. Uglavnom su oklopljeni celuloznim oklopom, no postoje i neoklopljeni oblici.

licença
cc-by-sa-3.0
direitos autorais
Autori i urednici Wikipedije
original
visite a fonte
site do parceiro
wikipedia emerging languages

Dinoflagellata ( Interlingua (Associação Internacional de Línguas Auxiliares) )

fornecido por wikipedia emerging languages

Dinoflagellata es un phylo de Dinozoa.

Nota
licença
cc-by-sa-3.0
direitos autorais
Wikipedia authors and editors
original
visite a fonte
site do parceiro
wikipedia emerging languages

Dinoflagellata ( Tagalo )

fornecido por wikipedia emerging languages

Ang Dinoflagellate ay isang phylum sa kahariang Protista.

May kaugnay na midya ang Wikimedia Commons ukol sa artikulong:
Mayroong kaugnay na impormasyon sa Wikispecies ang Dinoflagellata


Usbong Ang lathalaing ito ay isang usbong. Makatutulong ka sa Wikipedia sa nito.

licença
cc-by-sa-3.0
direitos autorais
Mga may-akda at editor ng Wikipedia
original
visite a fonte
site do parceiro
wikipedia emerging languages

Dinoflagellata: Brief Summary ( Tagalo )

fornecido por wikipedia emerging languages


Usbong Ang lathalaing ito ay isang usbong. Makatutulong ka sa Wikipedia sa nito.

licença
cc-by-sa-3.0
direitos autorais
Mga may-akda at editor ng Wikipedia
original
visite a fonte
site do parceiro
wikipedia emerging languages

Δινοφύκη ( Grego, Moderno (1453-) )

fornecido por wikipedia emerging languages

Τα Δινοφύκη (λατινικά: Dinophyceae) είναι η κύρια ομάδα των Δινομαστιγωτών (Dinoflagellata) του βασίλειου των Πρωτίστων, με εξαίρεση λίγες μόνο ομάδες που φαίνεται να έχουν αποκλίνει από τις υπόλοιπες σε πρώιμο εξελικτικό στάδιο. Τα περισσότερα δινοφύκη ανήκουν στο θαλάσσιο πλαγκτόν, αλλά υπάρχουν και αρκετά που απαντώνται στο γλυκό νερό λιμνών ή ποταμών. Οι πληθυσμοί τους κατανέμονται ανάλογα με τη θερμοκρασία, την αλατότητα και το βάθος. Περίπου τα μισά από όλα τα δινομαστιγωτά είναι φωτοσυνθετικοί οργανισμοί, και συνθέτουν μια από τις μεγαλύτερες ομάδες ευκαρυωτικών φυκών μαζί με αυτή των διατόμων. Όντας πρωτογενείς παραγωγοί αποτελούν σημαντικό μέρος της τροφικής αλυσίδας του νερού. Ορισμένα είδη, που ονομάζονται ζωοξανθέλλες είναι συμβιωτικοί οργανισμοί πολλών θαλάσσιων ζώων και πρωτόζωων, και παίζουν σημαντικό ρόλο στην βιολογία των κοραλλιογενών υφάλων. Άλλα δινομαστιγωτά είναι παρασιτικά (πχ Oodinium, Pfiesteria).

Πίνακας περιεχομένων

Μορφολογία

Τα περισσότερα δινομαστιγωτά είναι μονοκύτταρα και φέρουν δύο μαστίγια. Το ένα από αυτά εκτείνεται προς το οπίσθιο μέρος και δρα ως τιμόνι, παρέχοντας επίσης και μια μικρή προωθητική δύναμη, ενώ το άλλο σε πλευρικό- εγκάρσιο επίπεδο. Σε πολλά είδη το πλευρικό μαστίγιο δημιουργεί μια εγκάρσια αύλακα και παράγει μεγάλο ποσοστό της κίνησης του κυττάρου ενώ συχνά παρέχει στο κύτταρο τη δυνατότητα στροβιλισμού, ιδιότητα που χάρισε και στον συγκεκριμένο οργανισμό το όνομά του (ελληνικό Δίνος: στροβίλισμα).
Στα περισσότερα φωτοσυνθετικά είδη οι χλωροπλάστες περικλείονται από τρεις μεμβράνες, και περιέχουν χλωροφύλλες α και c, φυκοξανθίνη καθώς και άλλες χρωστικές ουσίες. Τα περισσότερα δινομαστιγωτά έχουν μια ιδιαίτερη μορφή πυρήνα, που ονομάζεται δινοκάρυον, στην οποία τα χρωμοσώματα συνδέονται με την πυρηνική μεμβράνη όχι μόνο κατά τη μίτωση, αλλά και καθ’ όλη τη διάρκεια της μεσόφασης ενώ δεν έχουν ιστόνες. Αυτό το είδος πυρήνα είχε κάποτε θεωρηθεί ως ένα ενδιάμεσο στάδιο μεταξύ των προκαρυωτικών και των ευκαρυωτικών κύτταρων, και έτσι οι οργανισμοί ονομάστηκαν μεσοκαρυωτικοί όμως πλέον το γνώρισμα αυτό θεωρείται ότι προέκυψε ανεξάρτητα και δεν αποτελεί προγονική μορφή των ευκαρυωτικών κυττάρων. Tα δινοφύκη έχουν ένα πολύπλοκο κυτταρικό κάλυμμα ονομάζεται αμφίεσμα και αποτελείται από πεπλατυσμένα κυστίδια, που ονομάζονται κυψελίδες. Σε ορισμένες μορφές σχηματίζουν επικαλυπτόμενες πλάκες κυτταρίνης οι οποίες δημιουργούν ένα είδος πανοπλίας που ονομάζεται θήκη. Η θήκη έχει διάφορα σχήματα και ιδιότητες ανάλογα με το είδος και μερικές φορές με το στάδιο του κύκλου ζωής.

Αναπαραγωγή

Στα περισσότερα δινομαστιγωτά, ο «πυρήνας» είναι δικαρυωτικός καθ' όλη τη διάρκεια της ζωής. Συνήθως είναι απλοειδή και αναπαράγονται κυρίως με διχοτόμηση, αλλά σε ορισμένα είδη εμφανίζεται και αμφιγονική αναπαραγωγή γεγονός που πραγματοποιείται με τη σύντηξη δύο ατόμων.

Άνθιση

→ κύριο λήμμα: Άνθιση φυτοπλαγκτού

Τα δινομαστιγωτά μερικές φορές ανθίζουν σε συγκεντρώσεις πάνω από ένα εκατομμύριο κύτταρα ανά χιλιοστόλιτρο (ml). Το φαινόμενο της άνθισης παράγεται όταν δινομαστιγωτά είναι σε θέση να αναπαραχθούν σε αφθονία, λόγω των αυξημένων θρεπτικών ουσιών στο νερό και ιδανικών περιβαλλοντικών συνθηκών γενικότερα. Ορισμένα δινοφύκη κατά τη διάρκεια άνθισης δημιουργούν την εντυπωσιακή όσο και επικίνδυνη όμως κόκκινη παλίρροια.

Τοξικά δινοφύκη

 src=
Dinophysis acuminata
Το πιο κοινό τοξικό δινοφύκος στις ελληνικές ακτές.

Τοξικά δινοφύκη ονομάζονται τα δινοφύκη που έχουν την δυνατότητα να παράγουν τοξικές ουσίες. Είναι γνωστό ότι από τα 185 είδη θαλάσσιων δινοφυκών, που δημιουργούν Επιβλαβείς Ανθίσεις Φυκών, πάνω από 60 είδη είναι τοξικά.[1] Όταν τοξικά δινοφύκη βρίσκονται σε κατάσταση άνθισης, μπορούν να προκαλέσουν μαζικό θάνατο σε πληθώρα θαλάσσιων οργανισμών.[2] Οι τοξίνες που παράγονται από τα δινοφύκη συσσωρεύονται σε διηθηματοφάγα οστρακοειδή, ζωοπλανκτό και φυτοφάγα ψάρια και μεταφέρονται μέσω της τροφικής αλυσίδας σε ανώτερα τροφικά επίπεδα.[3] Με αυτόν τον τρόπο οι τοξίνες των δινοφυκών μπορούν να φτάσουν και στον άνθρωπο και να προκαλέσουν σοβαρές επιπτώσεις στην υγεία ή σε σπανιότερες περιπτώσεις να οδηγήσουν ακόμη και στο θάνατο.[2]

Τοξίνες δινοφυκών

Τα δινοφύκη, εκτός από σημαντικοί πρωτογενείς παραγωγοί, είναι και οι κύριοι οργανισμοί που προκαλούν τις επιβλαβείς ανθίσεις μικροφυκών (HABs) στο θαλάσσιο περιβάλλον. Έχει παρατηρηθεί ότι κάποια είδη δινοφυκών μπορούν να παράγουν τοξίνες, οι οποίες παρουσιάζουν μεγάλη δομική και λειτουργική ποικιλομορφία. [4] Τα τελευταία χρόνια αυξάνονται διαρκώς οι έρευνες σχετικά με τις τοξίνες των δινοφυκών, καθώς μπορούν να προκαλέσουν δηλητηριάσεις στον άνθρωπο, μέσω της τροφικής αλυσίδας, με επιπτώσεις στη δημόσια υγεία, σε οικονομικές και σε παραγωγικές δραστηριότητες. Ανάλογα με τα κλινικά συμπτώματα που εκδηλώνονται στον άνθρωπο από τις τοξίνες, τα κυριότερα σύνδρομα των δηλητηριάσεων διακρίνονται σε πέντε κατηγορίες: 1) Παραλυτικού τύπου δηλητηρίαση από οστρακοειδή (PSP, Paralytic Shellfish Poisoning), 2) Διαρροϊκού τύπου δηλητηρίαση από οστρακοειδή (DSP, Diarrhetic Shellfish Poisoning), 3) Νευροτοξικού τύπου δηλητηρίαση από οστρακοειδή (NSP, Neurotoxic Shellfish Poisoning), 4) Δηλητηρίαση τύπου Ciguatera (CFP/CSP, Ciguatera Fish/Shellfish Poisoning) και 5) Δηλητηρίαση από αζασπειροξέα (AZP, Azaspiracid Shellfish Poisoning).[1] Εκτός από τις τοξίνες που προκαλούν τις παραπάνω ασθένειες, έχουν πρόσφατα αναφερθεί και χαρακτηριστεί επιπλέον τοξίνες, όπως η γεσσοτοξίνη (YTX)[5], η παλυτοξίνη (PLT)[1][6] και οι κυκλικές ιμίνες (CIs)[7], γεγονός που έχει αυξήσει τις ανησυχίες του κοινού σχετικά με τις τοξίνες των δινοφυκών.

Φύση και δράση των τοξινών

Παραλυτικού τύπου δηλητηρίαση από οστρακοειδή (PSP, Paralytic Shellfish Poisoning)

Η παραλυτικού τύπου δηλητηρίαση από οστρακοειδή PSP είναι μια ασθένεια με παγκόσμια εξάπλωση που προκαλεί τόσο νευρολογικά όσο και γαστρεντερικά συμπτώματα από την κατανάλωση οστρακοειδών που έχουν βιοσυσσωρεύσει στους ιστούς τους τοξίνες. Μέλη από τρία γένη δινοφυκών έχει καταγραφεί ότι αποτελούν κύρια πηγή τοξινών PSP: Alexandrium, Gymnodinium, και Pyrodinium. Οι παραλυτικές τοξίνες οστρακοειδών (PSTs) παράγονται σε διαφορετικές αναλογίες από τα διαφορετικά είδη δινοφυκών, ακόμα και από τα διαφορετικά στελέχη ενός είδους. Οι PSTs είναι υδατοδιαλυτές μη πρωτεϊνικές τοξίνες, σταθερές σε υψηλές θερμοκρασίες. Πρόκειται για πολύ γνωστές και ισχυρές νευροτοξίνες οι οποίες δεσμεύονται σε κανάλια ιόντων νατρίου. Η σαξιτοξίνη (STX) είναι η πιο τοξική και η πιο καλά μελετημένη αυτές. Η θανατηφόρα δόση για πρόσληψη από το στόμα σε ανθρώπους είναι 1 έως 4 mg, ανάλογα με το φύλο και τη φυσιολογική κατάσταση του ατόμου. Απορροφάται γρήγορα μέσω του γαστρεντερικού σωλήνα και εκκρίνεται στα ούρα. [4]

Διαρροϊκού τύπου δηλητηρίαση από οστρακοειδή (DSP, Diarrhetic Shellfish Poisoning)

Η Διαρροϊκού τύπου δηλητηρίαση από οστρακοειδή (DSP), που προκαλείται από την κατανάλωση οστρακοειδών στους ιστούς των οποίων έχουν συσσωρευτεί τοξίνες, περιγράφηκε για πρώτη φορά το 1980 και έχουν καταγραφεί περιστατικά σε όλο τον κόσμο. Η τοξίνη που ευθύνεται για την ασθένεια αυτή είναι το οκαδαϊκό οξύ (OA) και τα ανάλογα αυτού, που παράγονται από μέλη των γενών Dinophysis και Prorocentrum.[8] Το οκαδαϊκό οξύ είναι μια υδρόφοβη ουσία που μπορεί να εισχωρήσει στα κύτταρα και η δράση του είναι η αναστολή των πρωτεϊνικών φωσφατασών.[9]

Νευροτοξικού τύπου δηλητηρίαση από οστρακοειδή (NSP, Neurotoxic Shellfish Poisoning)

Η νευροτοξικού τύπου δηλητηρίαση από οστρακοειδή (NSP) προκαλείται κυρίως από την κατάποση οστρακοειδών που έχουν εκτεθεί σε ανθίσεις του δινοφύκους Karenia brevis. Το K. brevis απαντάται φυσικά στον Κόλπο του Μεξικού, στην Καραϊβική Θάλασσα και κατά μήκος των ακτών της Νέας Ζηλανδίας. Οι νευροτοξικές τοξίνες που προκαλούν τη νόσο είναι γνωστές ως μπρεβετοξίνες (PbTx). Όπως πολλές θαλάσσιες τοξίνες, οι μπρεβετοξίνες δεν έχουν οσμή ή γεύση και είναι σταθερές σε οξέα και υψηλές θερμοκρασίες. Πρόκειται για λιποδιαλυτούς κυκλικούς πολυαιθέρες οι οποίοι δεσμεύονται με μεγάλη συγγένεια σε τασεο-εξαρτώμενα κανάλια ιόντων νατρίου, προκαλώντας εισροή ιόντων και εκπόλωση της μεμβράνης των νευρικών κυττάρων.[10]

Δηλητηρίαση τύπου Ciguatera (CFP/CSP, Ciguatera Fish/Shellfish Poisoning)

Η δηλητηρίαση τύπου Ciguatera προκαλείται από την κατανάλωση ψαριών στους ιστούς των οποίων έχουν συσσωρευτεί τοξίνες (μουρούνες, σφύρες, σφυρίδες κ.α.) και αποτελεί την πιο συχνή δηλητηρίαση από θαλάσσιες βιοτοξίνες. Εκτιμάται ότι 10.000-50.000 άνθρωποι υποφέρουν κάθε χρόνο από την ασθένεια. Η CFP είναι πιο συχνή σε τροπικές και υποτροπικές περιοχές. Οι τοξίνες που την προκαλούν είναι κυρίως η σιγκουατοξίνη (CTX) και η μαϊτοτοξίνη (MTX) που παράγονται από το είδη του γένους Gambierdiscus. Η σιγκουατοξίνη είναι μια λιποδιαλυτή ουσία η οποία δεσμεύεται σε τασεο-εξαρτώμενα κανάλια νατρίου και προκαλεί την εκπόλωση των μεμβρανών των νευρικών κυττάρων. Στον άνθρωπο η θανατηφόρα δόση για πρόσληψη από το στόμα υπολογίζεται ότι είναι 0,1 μg στα ενήλικα άτομα. Η μαϊτοτοξίνη είναι η μεγαλύτερη υδατοδιαλυτή μη πεπτιδική βιοτοξίνη που γνωρίζουμε μέχρι σήμερα και η δράση της εντοπίζεται στη μείωση της εισροής ασβεστίου στα κύτταρα.[11]

Δηλητηρίαση από αζασπειροξέα (AZP, Azaspiracid Shellfish Poisoning)

Τα αζασπειροξέα (AZA) είναι μια ομάδα λιπόφιλων πολυαιθέρων τα οποία βιοσυσσωρεύονται στα θαλασσινά και μπορούν να προκαλέσουν γαστρεντερικά προβλήματα στους ανθρώπους. Η δηλητηρίαση από αζασπειροξέα (AZP), καταγράφηκε για πρώτη φορά στην Ολλανδία αλλά σύντομα έγινε ένα συνεχές πρόβλημα στην Ευρώπης και σήμερα επηρεάζει κυρίως την Ιρλανδία. Τα δινοφύκη που παράγουν αζασπειροξέα και ανάλογα αυτών, ανήκουν κυρίως στο γένος Azadinium και πρόσφατα ταυτοποιήθηκε η παραγωγή τους από μέλη του συγγενούς γένους Amphidoma.[12] Ο μηχανισμός δράσης τους δεν είναι γνωστός αλλά από μελέτες που έχουν γίνει συσχετίστηκαν με αύξηση της συγκέντρωσης ασβεστίου επαγόμενη από μεταβολή του ενδοκυτταρικού PH.[13]

Γεσσοτοξίνη (YTX)

Η γεσσοτοξίνη (YTX) και τα ανάλογά της, είναι πολυαιθερικές ενώσεις που συναντώνται όλο και πιο συχνά στα οστρακοειδή και καταγράφηκαν πρώτη φορά στην Ιαπωνία. Έκτοτε, οι γεσσοτοξίνες έχουν προκαλέσει παγκόσμια ανησυχία λόγω των πιθανών κινδύνων τους στους ανθρώπους. Παράγονται κυρίως από τα δινοφύκη Protoceratium reticulatum, Lingulodinium polyedrum και Gonyaulax spinifera.[5] Πρόσφατα ταυτοποιήθηκε η παραγωγή ενός αναλόγου γεσσοτοξίνης, της κουλιατοξίνης, από το δινοφύκος Coolia tropicalis, και η παραγωγή πέντε αναλόγων γεσσοτοξίνης από το C. malayensis.[14] Οι γεσσοτοξίνες αρχικά κατατάσσονταν στην ομάδα των τοξινών DSP, λόγω της βιοσυσώρρευσής τους και των παρόμοιων συμπτωμάτων που προκαλούν στα ποντίκια. Αργότερα, όμως, διαχωρίστηκαν καθώς δεν προκαλούν διάρροια και δεν αναστέλλουν τη δράση των πρωτεϊνικών φωσφατασών.[5]

Παλυτοξίνη (PTX)

Η παλυτοξίνη (PTX) θεωρείται η πιο ισχυρή βιολογικά παραγόμενη θαλάσσια τοξίνη, η οποία απομονώθηκε για πρώτη φορά το 1971 από ανθόζωα του γένους Palythoa.[1] Σήμερα, ωστόσο, η παλυτοξίνη και τα ανάλογα της θεωρείται ότι παράγονται από μέλη του γένους δινοφυκών Ostreopsis, το οποίο αρχικά εντοπιζόταν σε τροπικές και υποτροπικές περιοχές, αλλά στην συνέχεια εξαπλώθηκε και σε εύκρατες.[6] Η δηλητηρίαση από παλυτοξίνη μπορεί να προκληθεί από κατανάλωση ψαριών, καρκινοειδών ή δίθυρων μαλακίων στους ιστούς των οποίων έχει συσσωρευτεί η τοξίνη. Τα κυριότερα ανάλογα παλυτοξίνης είναι οι οβατοξίνες (από το O. ovata), οι μασκαρενοτοξίνες (από το O. mascarenensis) και οι οστρεοσίνες (από το O. siamensis).[1] Η παλυτοξίνη είναι ένα μεγάλο και περίπλοκο μη πρωτεϊνικό μόριο που περιέχει τόσο υδρόφιλες όσο και λιπόφιλες περιοχές και διαθέτει τη μεγαλύτερη αλυσίδα συνεχόμενων ατόμων άνθρακα που έχει παρατηρηθεί σε φυσικά προϊόντα.[6] Μια βασική δράση της παλυτοξίνης είναι η επαγωγή καθυστερημένης αιμόλυσης σε ερυθροκύτταρα. Δεσμεύεται σε αντλίες ιόντων νατρίου/καλίου της κυτταρικής μεμβράνης με αποτέλεσμα τη μεταβολή της διαπερατότητάς της και συνεπώς την αύξηση της ενδοκυτταρικής συγκέντρωσης ιόντων νατρίου και ασβεστίου.[1]

Κυκλικές ιμίνες (CIs)

Οι κυκλικές ιμίνες (CIs) είναι ταχέως δραστικές λιπόφιλες βιοτοξίνες που έχουν συσχετισθεί με βλαβερές ανθίσεις φυκών και με τοξικότητα οστρακοειδών. Περιλαμβάνουν τις υποομάδες: σπειρολίδια (spirolides, SPXs), γυμνοδιμίνες (gymnodimines, GYMs), πιννατοξίνες (pinnatoxins, PnTXs), πτεριατοξίνες (pteriatoxins, PtTXs), προροσεντρολίδες (prorocentrolides) και σπειρο-προροσεντριμίνες (spiro-prorocentrimines). Οι πρώτες τρεις υποομάδες, οι οποίες παράγονται από δινοφύκη, απασχολούν περισσότερο την Ευρωπαϊκή Ένωση (ΕΕ), διότι σε αντίθεση με τις υπόλοιπες, έχουν ήδη ανιχνευθεί στην Ευρώπη ή υπάρχουν ισχυρότατες ενδείξεις της παρουσίας τους. Τα σπειρολίδια παράγονται από το Alexandrium ostenfeldii, οι γυμνοδιμίνες από το Karenia selliformis [7] και οι πιννατοξίνες από το Vulcanodinium rugosum.[15]

Επιπτώσεις στην υγεία

Παραλυτικού τύπου δηλητηρίαση από οστρακοειδή (PSP, Paralytic Shellfish Poisoning)

Τα συμπτώματα που προκαλεί η δηλητηρίαση τύπου PSP μπορεί να εμφανιστούν 10 έως 30 λεπτά μετά την κατάποση ωμών ή μαγειρεμένων οστρακοειδών και περιλαμβάνουν αίσθημα γαργαλητού ή καψίματος των χειλιών, του στόματος και της γλώσσας, μούδιασμα των άκρων, γαστρεντερικά προβλήματα, δυσκολία στην αναπνοή και αίσθηση αποπροσανατολισμού ακολουθούμενη από πλήρη παράλυση. Σε σοβαρές περιπτώσεις η δηλητηρίαση οδηγεί σε μια ποικιλία νευρολογικών συμπτωμάτων με αποκορύφωμα την αναπνευστική ανακοπή και το καρδιαγγειακό σοκ ή το θάνατο.[11]

Διαρροϊκού τύπου δηλητηρίαση από οστρακοειδή (DSP, Diarrhetic Shellfish Poisoning)

Τα συμπτώματα που προκαλείται από τη δηλητηρίαση DSP είναι κυρίως γαστρεντερικά, όπως διάρροια, ναυτία, εμετός και κοιλιακός πόνος και εκδηλώνονται περίπου 30 λεπτά μετά την κατανάλωση μολυσμένων οστρακοειδών.[9]

Νευροτοξικού τύπου δηλητηρίαση από οστρακοειδή (NSP, Neurotoxic Shellfish Poisoning)

Η δηλητηρίαση NSP προκαλεί γαστρεντερικά και νευρολογικά συμπτώματα όπως ναυτία, εμετούς, αίσθηση γαργαλητού και μουδιάσματος στα χείλη, στο στόμα και στα στη γλώσσα, ανεξέλεγκτες κινήσεις και μυϊκούς πόνους. Τα νευρολογικά συμπτώματα μπορούν να εξελιχθούν σε μερική παράλυση ή ακόμα και αναπνευστική ανεπάρκεια. Δεν έχουν καταγραφεί περιπτώσεις θανάτου από NSP, αλλά έχουν καταγραφεί νοσηλείες.[10]

Δηλητηρίαση τύπου Ciguatera (CFP/CSP, Ciguatera Fish/Shellfish Poisoning)

Τα πρώτα συμπτώματα της CFP συνήθως εμφανίζονται 6 με 12 ώρες μετά την κατανάλωση του «μολυσμένου» ψαριού και είναι γαστρεντερικά, όπως διάρροια, εμετό, ναυτία και κοιλιακές κράμπες. Τις πρώτες δύο μέρες συνήθως εμφανίζονται νευρολογικά συμπτώματα που περιλαμβάνουν αίσθηση γαργαλητού στη γλώσσα και τα χείλη, πονοκέφαλο, μεταλλική γεύση, πόνο στις αρθρώσεις, μυαλγία, φαγούρα, ζαλάδα, αντιστροφή στην αντίληψη της θερμοκρασίας κ.α. Τέλος, μπορεί να εμφανιστούν καρδιαγγειακά προβλήματα, όπως υπόταση και βραδυκαρδία. Τα παραπάνω συμπτώματα διαφέρουν ανάλογα με το φύλο και τη φυσική κατάσταση του ασθενούς, με την ποσότητα τοξίνης που καταναλώθηκε, ακόμα και με τη γεωγραφική περιοχή.[16]

Δηλητηρίαση από αζασπειροξέα (AZP, Azaspiracid Shellfish Poisoning)

Τα συμπτώματα της δηλητηρίασης AZP περιλαμβάνουν κυρίως ναυτία, εμετό, διάρροια και κοιλιακές κράμπες. Νευροτοξικά συμπτώματα έχουν επίσης παρατηρηθεί.[13]

Γεσσοτοξίνη (YTX)

Περιστατικά δηλητηρίασης ανθρώπων από γεσσοτοξίνη δεν έχουν καταγραφεί, αλλά σε πειράματα που έγιναν σε ποντίκια παρατηρήθηκε βλάβη σε καρδιακούς μυς, ήπαρ, πάγκρεας και εγκέφαλο.[5]

Παλυτοξίνη (PTX)

Η δηλητηρίαση από κατανάλωση ψαριών, καρκινοειδών ή δίθυρων μαλακίων στους ιστούς των οποίων έχει συσσωρευτεί η παλυτοξίνη, μπορεί να προκληθεί ακόμα και σε χαμηλή συγκέντρωση τοξίνης και τα συμπτώματά της περιλαμβάνουν πυρετό, υπνηλία, απώλεια ελέγχου κινήσεων, αδύναμα άκρα και έχουν καταγραφεί και θάνατοι.[4] Οι οβατοξίνες (OVTXs), βέβαια, μπορεί να προκαλέσουν δερματοπάθειες, ενοχλήσεις στα μάτια και αναπνευστικά προβλήματα, ακόμα και σε λουόμενους ακτών όπου βρίσκεται σε έξαρση το O. ovata.[1]

Κυκλικές ιμίνες (CIs)

Παρά την αποδεδειγμένη τοξικότητα των κυκλικών ιμινών σε ποντίκια, δεν έχουν ακόμη καταγραφεί περιστατικά μόλυνσης και εκδήλωσης συμπτωμάτων σε ανθρώπους, ωστόσο απαιτείται περαιτέρω έρευνα.[7]

Τοξικά δινοφύκη στην Ελλάδα

Το πιο κοινό τοξικό δινοφύκος στις ελληνικές ακτές είναι το Dinophysis cf. acuminata για το οποίο υπάρχουν συνεχείς καταγραφές από το 2000 και μετά. Ιδιαίτερα στο Θερμαϊκό Κόλπο έχει συσχετιστεί με επαναλαμβανόμενα τοξικά επεισόδια <>. Άλλα είδη του γένους Dinophysis που έχουν ταυτοποιηθεί στις ελληνικές ακτές είναι τα: D. sacculus, D. rotundata,D. fortii, D. caudata, D. tripos, D. odiosa, D. cf. micropterygia, D. acuta, D. rapa, και D. rudgei. Όσον αφορά το γένος Alexandrium έχουν καταγραφεί τα είδη: A. minutum, A. insuetum και A. taylori. Τα δύο τελευταία μάλιστα φάνηκε να ευθύνονται για ερυθρές παλίρροιες στα νερά του Αμβρακικού Kόλπου και του Πόρτο-Λάγους, αντίστοιχα. Είδη του γένους Karenia ανιχνεύονται σε υψηλά επίπεδα στον Αμβρακικό και το Θερμαϊκό Κόλπο, ενώ στο Σαρωνικό Κόλπο έχει ανιχνευθεί το είδος Karenia brevis. Τα τελευταία χρόνια αυξάνονται οι αναφορές βενθικών ειδών τοξικών δινοφυκών, όπως του Prorocentrum lima και του Coolia monotis, που εμφανίζεται σε πολλές παράκτιες περιοχές της Ελλάδας μαζί με βενθικά είδη των γενών Gambierdiscus, Ostreopsis, Prorocentrum και Amphidinium.[1]

Δείτε επίσης

Παραπομπές

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 Αλιγιζάκη, Αικατερίνη (2008). Βιονομία βενθικών δινοφυκών σε παράκτιες περιοχές του Βόρειου Αιγαίου με έμφαση σε τοξικά είδη. doi:10.12681/eadd/21920. http://hdl.handle.net/10442/hedi/21920.
  2. 2,0 2,1 «Dinoflagellates». Smithsonian Institution National Museum of Natural History. Ανακτήθηκε στις 3 Ιουνίου 2015.
  3. Tester, Patricia A. et al (1999). «Vectorial transport of toxins from the dinoflagellate Gymnodinium breve through copepods to fish». Journal of Plankton Research. doi:10.1093/plankt/22.1.47.
  4. 4,0 4,1 4,2 Wang, Da-Zhi (2008-6). «Neurotoxins from Marine Dinoflagellates: A Brief Review». Marine Drugs 6 (2): 349–371. doi:10.3390/md20080016. PMID 18728731. PMC PMC2525493. http://www.mdpi.org/marinedrugs/list08.htm#10.3390_md20080016.
  5. 5,0 5,1 5,2 5,3 Fernández, José J.; Franco, José M.; Riobó, Pilar; Norte, Manuel; Daranas, Antonio H.; Paz, Beatriz (2008/6). «Yessotoxins, a Group of Marine Polyether Toxins: an Overview» (στα αγγλικά). Marine Drugs 6 (2): 73–102. doi:10.3390/md6020073. https://www.mdpi.com/1660-3397/6/2/73.
  6. 6,0 6,1 6,2 Aligizaki, Katerina; Katikou, Panagiota; Nikolaidis, Georgios; Panou, Alexandra (2008-03-01). «First episode of shellfish contamination by palytoxin-like compounds from Ostreopsis species (Aegean Sea, Greece)». Toxicon 51 (3): 418–427. doi:10.1016/j.toxicon.2007.10.016. ISSN 0041-0101. http://www.sciencedirect.com/science/article/pii/S004101010700390X.
  7. 7,0 7,1 7,2 «Scientific Opinion on marine biotoxins in shellfish – Cyclic imines (spirolides, gymnodimines, pinnatoxins and pteriatoxins)» (στα αγγλικά). EFSA Journal 8 (6): 1628. 2010. doi:10.2903/j.efsa.2010.1628. ISSN 1831-4732. https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2010.1628.
  8. Madigan, Thomas L.; Lee, Ken G.; Padula, David J.; McNabb, Paul; Pointon, Andrew M. (2006-03-01). «Diarrhetic shellfish poisoning (DSP) toxins in South Australian shellfish». Harmful Algae 5 (2): 119–123. doi:10.1016/j.hal.2004.12.005. ISSN 1568-9883. http://www.sciencedirect.com/science/article/pii/S1568988305000132.
  9. 9,0 9,1 «[Frontiers in Bioscience, 4, d646-658, October 1, 1999]». www.bioscience.org. Ανακτήθηκε στις 8 Ιουνίου 2019.
  10. 10,0 10,1 Hammond, Roberta; Fleming, Lora E.; Reich, Andrew; Watkins, Sharon M. (2008/9). «Neurotoxic Shellfish Poisoning» (στα αγγλικά). Marine Drugs 6 (3): 431–455. doi:10.3390/md6030431. https://www.mdpi.com/1660-3397/6/3/431.
  11. 11,0 11,1 Clark, R. F.; Williams, S. R.; Nordt, S. P.; Manoguerra, A. S. (1999). «A review of selected seafood poisonings». Undersea & Hyperbaric Medicine: Journal of the Undersea and Hyperbaric Medical Society, Inc 26 (3): 175–184. ISSN 1066-2936. PMID 10485519. https://www.ncbi.nlm.nih.gov/pubmed/10485519.
  12. Tillmann, Urban; Edvardsen, Bente; Krock, Bernd; Smith, Kirsty F.; Paterson, Ruth F.; Voß, Daniela (2018-12-01). «Diversity, distribution, and azaspiracids of Amphidomataceae (Dinophyceae) along the Norwegian coast». Harmful Algae 80: 15–34. doi:10.1016/j.hal.2018.08.011. ISSN 1568-9883. http://www.sciencedirect.com/science/article/pii/S156898831830129X.
  13. 13,0 13,1 Alfonso, Amparo; Vieytes, Mercedes R.; Ofuji, Katsuya; Satake, Masayuki; Nicolaou, K. C.; Frederick, Michael O.; Botana, L. M. (2006-08-04). «Azaspiracids modulate intracellular pH levels in human lymphocytes». Biochemical and Biophysical Research Communications 346 (3): 1091–1099. doi:10.1016/j.bbrc.2006.06.019. ISSN 0006-291X. http://www.sciencedirect.com/science/article/pii/S0006291X06013167.
  14. Leaw, Chui Pin; Tan, Toh Hii; Lim, Hong Chang; Teng, Sing Tung; Yong, Hwa Lin; Smith, Kirsty F.; Rhodes, Lesley; Wolf, Matthias και άλλοι. (2016-05-01). «New scenario for speciation in the benthic dinoflagellate genus Coolia (Dinophyceae)». Harmful Algae 55: 137–149. doi:10.1016/j.hal.2016.02.010. ISSN 1568-9883. http://www.sciencedirect.com/science/article/pii/S1568988315300524.
  15. Rhodes, Lesley; Smith, Kirsty; Selwood, Andrew; McNabb, Paul; Munday, Rex; Suda, Shoichiro; Molenaar, Sam; Hallegraeff, Gustaaf (2011-11). «Dinoflagellate Vulcanodinium rugosum identified as the causative organism of pinnatoxins in Australia, New Zealand and Japan» (στα αγγλικά). Phycologia 50 (6): 624–628. doi:10.2216/11-19.1. ISSN 0031-8884. https://www.tandfonline.com/doi/full/10.2216/11-19.1.
  16. Fleming, Lora E.; Brewer, Tom; Benner, Ronald; Swajian, Karen; Clarkson-Townsend, Danielle; Ayyar, Ram; Berdalet, Elisa; Blythe, Donna και άλλοι. (2017/3). «An Updated Review of Ciguatera Fish Poisoning: Clinical, Epidemiological, Environmental, and Public Health Management» (στα αγγλικά). Marine Drugs 15 (3): 72. doi:10.3390/md15030072. https://www.mdpi.com/1660-3397/15/3/72.

Βιβλιογραφία

  • "Dinoflagellate - Definition from the Merriam-Webster Online Dictionary". Ανακτήθηκε 2009-06-15.
  • "www.ncbi.nlm.nih.gov". Ανακτήθηκε 2009-06-15.
  • Gymnodinium catenatum Graham (Dinophyceae): Morphology and affinities with armoured forms. G. Morey-Gaines Department of Botany, Southern Illinois University, Carbondale, IL 62901 U.S.A
  • Τhe fine structure of two photosynthetic species of Dinophysis (Dinophysiales, Dinophyceae) Ian A. N. Lucas1. Maret Vesk2
licença
cc-by-sa-3.0
direitos autorais
Συγγραφείς και συντάκτες της Wikipedia
original
visite a fonte
site do parceiro
wikipedia emerging languages

Δινοφύκη: Brief Summary ( Grego, Moderno (1453-) )

fornecido por wikipedia emerging languages

Τα Δινοφύκη (λατινικά: Dinophyceae) είναι η κύρια ομάδα των Δινομαστιγωτών (Dinoflagellata) του βασίλειου των Πρωτίστων, με εξαίρεση λίγες μόνο ομάδες που φαίνεται να έχουν αποκλίνει από τις υπόλοιπες σε πρώιμο εξελικτικό στάδιο. Τα περισσότερα δινοφύκη ανήκουν στο θαλάσσιο πλαγκτόν, αλλά υπάρχουν και αρκετά που απαντώνται στο γλυκό νερό λιμνών ή ποταμών. Οι πληθυσμοί τους κατανέμονται ανάλογα με τη θερμοκρασία, την αλατότητα και το βάθος. Περίπου τα μισά από όλα τα δινομαστιγωτά είναι φωτοσυνθετικοί οργανισμοί, και συνθέτουν μια από τις μεγαλύτερες ομάδες ευκαρυωτικών φυκών μαζί με αυτή των διατόμων. Όντας πρωτογενείς παραγωγοί αποτελούν σημαντικό μέρος της τροφικής αλυσίδας του νερού. Ορισμένα είδη, που ονομάζονται ζωοξανθέλλες είναι συμβιωτικοί οργανισμοί πολλών θαλάσσιων ζώων και πρωτόζωων, και παίζουν σημαντικό ρόλο στην βιολογία των κοραλλιογενών υφάλων. Άλλα δινομαστιγωτά είναι παρασιτικά (πχ Oodinium, Pfiesteria).

licença
cc-by-sa-3.0
direitos autorais
Συγγραφείς και συντάκτες της Wikipedia
original
visite a fonte
site do parceiro
wikipedia emerging languages

Динофит балырлары ( Quirguiz )

fornecido por wikipedia emerging languages
 src=
Ceratium furca.

Динофит балырлары (Dinophyta) - абдан өзгөчөлөнгөн, көбүнчө бир клеткалуу балырлар. Алардын эң мүнөздүү белгиси - клеткаларынын дорсовентралдык түзүлүштө болушу. Көптөгөн өкүлдөрүнүн клеткаларынын түзүлүшүндө жон, курсак жана каптал бөлүктөр байкалат, ошондой эле алдыңкы жана арткы бөлүктөрү болот. Клеткаларда атайын «жолдордун» болушу - динофиталардын экинчи өзгөчө белгиси. «Жолдор» узунунан жана туурасынан эки түрдүү (же бир узуну гана болот) жайланышкан.

Түзүлүшү жана функциясы боюнча эки кыл шапалакчалардын болушу -монаддык динофиттердин үчүнчү өзгөчө белгиси. Буларга амеба сыяктуу, коккоиддик, пальмеллоиддик жана жип түрүндөгү түрлөр киришип, өсүмдүктөрдүн да, жаныбарлардын да белгилерин алып жүрүшөт.

Катуу чел кабык менен капталган көпчүлүк клеткаларда күрөң, боз, саргыч, кызгылт түстөгү хроматофорлор жайгашат. Хроматофорлор хлорофилл менен катар бозкүрөң пигмент-пирофиллди кармайт. Азыктанышы автотрофтук, кээде сапротрофтук, кээде аралаш болот. Ассимиляциянын азык заты крахмал жана май, азыраак лейкозин, волютиндер.

Көбөйүү негизинен вегетативдик (клеткалардын кыймыл учурундагы узунунан бөлүнүшү менен). Жыныссыз көбөйүү (автоспора, зооспоралар) сейрек учурайт. Айрым өкүлдөрдө изогамиялык жынысташуу жүрөт.

Динофиттер көбүнчө тузсуз, азыраак туздуу жана өтө туздуу сууларда таркалышкан, 150гө жакын тукумду, 1100 түрлөрдү кармайт. Борбордук Азиянын сууларында 50 түр жана форма, анын ичинде Кыргызстандын сууларында 30га жакын түр белгилүү.

Айрым өкүлдөр, перидиниум (Peridinium) жана церациум (Ceratium) - таза, тунук көлдөрдүн (Сарычелек, Чатыркөл, Кабланкөл, Чоңкөл Музафаров, 1958, 1965; Мамбеталиева 1963; Каримова, 1973; Кулумбаева, 1983 жана башка) байлыгы. Булар кичинекей көлөмдөрдө, суу сактагычтарда да кездешет.

Колдонулган адабияттар

licença
cc-by-sa-3.0
direitos autorais
Wikipedia жазуучу жана редактор
original
visite a fonte
site do parceiro
wikipedia emerging languages

Динофит балырлары: Brief Summary ( Quirguiz )

fornecido por wikipedia emerging languages
 src= Ceratium furca.

Динофит балырлары (Dinophyta) - абдан өзгөчөлөнгөн, көбүнчө бир клеткалуу балырлар. Алардын эң мүнөздүү белгиси - клеткаларынын дорсовентралдык түзүлүштө болушу. Көптөгөн өкүлдөрүнүн клеткаларынын түзүлүшүндө жон, курсак жана каптал бөлүктөр байкалат, ошондой эле алдыңкы жана арткы бөлүктөрү болот. Клеткаларда атайын «жолдордун» болушу - динофиталардын экинчи өзгөчө белгиси. «Жолдор» узунунан жана туурасынан эки түрдүү (же бир узуну гана болот) жайланышкан.

Түзүлүшү жана функциясы боюнча эки кыл шапалакчалардын болушу -монаддык динофиттердин үчүнчү өзгөчө белгиси. Буларга амеба сыяктуу, коккоиддик, пальмеллоиддик жана жип түрүндөгү түрлөр киришип, өсүмдүктөрдүн да, жаныбарлардын да белгилерин алып жүрүшөт.

Катуу чел кабык менен капталган көпчүлүк клеткаларда күрөң, боз, саргыч, кызгылт түстөгү хроматофорлор жайгашат. Хроматофорлор хлорофилл менен катар бозкүрөң пигмент-пирофиллди кармайт. Азыктанышы автотрофтук, кээде сапротрофтук, кээде аралаш болот. Ассимиляциянын азык заты крахмал жана май, азыраак лейкозин, волютиндер.

Көбөйүү негизинен вегетативдик (клеткалардын кыймыл учурундагы узунунан бөлүнүшү менен). Жыныссыз көбөйүү (автоспора, зооспоралар) сейрек учурайт. Айрым өкүлдөрдө изогамиялык жынысташуу жүрөт.

Динофиттер көбүнчө тузсуз, азыраак туздуу жана өтө туздуу сууларда таркалышкан, 150гө жакын тукумду, 1100 түрлөрдү кармайт. Борбордук Азиянын сууларында 50 түр жана форма, анын ичинде Кыргызстандын сууларында 30га жакын түр белгилүү.

Айрым өкүлдөр, перидиниум (Peridinium) жана церациум (Ceratium) - таза, тунук көлдөрдүн (Сарычелек, Чатыркөл, Кабланкөл, Чоңкөл Музафаров, 1958, 1965; Мамбеталиева 1963; Каримова, 1973; Кулумбаева, 1983 жана башка) байлыгы. Булар кичинекей көлөмдөрдө, суу сактагычтарда да кездешет.

licença
cc-by-sa-3.0
direitos autorais
Wikipedia жазуучу жана редактор
original
visite a fonte
site do parceiro
wikipedia emerging languages