dcsimg

Gymnotiformes

provided by wikipedia EN

 src=
Despite the name, the Electric Eel is a type of knifefish

The Gymnotiformes /ɪmˈnɒtɪfɔːrmz/ are an order of teleost bony fishes commonly known as the Neotropical or South American knifefish. They have long bodies and swim using undulations of their elongated anal fin. Found almost exclusively in fresh water (the only exceptions are species that occasionally may visit brackish water to feed), these mostly nocturnal fish are capable of producing electric fields for navigation, communication, and, in the case of the electric eel (Electrophorus electricus), attack and defense.[2] A few species are familiar to the aquarium trade, such as the black ghost knifefish (Apteronotus albifrons), the glass knifefish (Eigenmannia virescens), and the banded knifefish (Gymnotus carapo).

Description

Aside from the electric eel (Electrophorus electricus), Gymnotiformes are slender fish with narrow bodies and tapering tails, hence the common name of "knifefishes". They have neither pelvic fins nor dorsal fins, but do possess greatly elongated anal fins that stretch along almost the entire underside of their bodies. The fish swim by rippling this fin, keeping their bodies rigid. This means of propulsion allows them to move backwards as easily as they move forward.[3]

The knifefish has approximately one hundred and fifty fin rays along its ribbon-fin. These individual fin rays can be curved nearly twice the maximum recorded curvature for ray-finned fish fin rays during locomotion. These fin rays are curved into the direction of motion, indicating that the knifefish has active control of the fin ray curvature, and that this curvature is not the result of passive bending due to fluid loading.[4]

Different wave patterns produced along the length of the elongated anal fin allow for various forms of thrust. The wave motion of the fin resembles traveling sinusoidal waves. A forward traveling wave can be associated with forward motion, while a wave in the reverse direction produces thrust in the opposite direction.[5] This undulating motion of the fin produced a system of linked vortex tubes that were produced along the bottom edge of the fin. A jet was produced at an angle to the fin that was directly related to the vortex tubes, and this jet provides propulsion that moves the fish forward.[6] The wave motion of the fin is similar to that of other marine creatures, such as the undulation of the body of an eel, however the wake vortex produced by the knifefish was found to be a reverse Kármán vortex. This type of vortex is also produced by some fish, such as trout, through the oscillations of their caudal fins.[7] The speed at which the fish moved through the water had no correlation to the amplitude of its undulations, however it was directly related to the frequency of the waves generated.[8]

Studies have shown that the natural angle between the body of the knifefish and its fin is essential for efficient forward motion, for if the anal fin was located directly underneath, then an upwards force would be generated with forward thrust, which would require an additional downwards force in order to maintain neutral buoyancy.[7] A combination of forward and reverse wave patterns, which meet towards the center of the anal fin, produce a heave force allowing for hovering, or upwards movement.[5]

The ghost knifefish can vary the undulation of the waves, as well as the angle of attack of the fin to achieve various directional changes. The pectoral fins of these fishes can help to control roll and pitch control.[9] By rolling they can generate a vertical thrust to quickly, and efficiently, ambush their prey.[7] The forward movement is determined exclusively by the ribbon fins and the contribution of the pectoral fins for forward movement was negligible.[10] The body is kept relatively rigid and there is very little motion of the center of mass motion during locomotion compared to the body size of the fish.[8]

The caudal fin is absent, or in the apteronotids, greatly reduced. The gill opening is restricted. The anal opening is under the head or the pectoral fins.[11]

These fish possess electric organs that allow them to produce electricity. In most gymnotiforms, the electric organs are derived from muscle cells. However, adult apteronotids are one exception, as theirs are derived from nerve cells (spinal electromotor neurons). In gymnotiforms, the electric organ discharge may be continuous or pulsed. If continuous, it is generated day and night throughout the entire life of the individual. Certain aspects of the electric signal are unique to each species, especially a combination of the pulse waveform, duration, amplitude, phase and frequency.[12]

The electric organs of most Gymnotiformes produce tiny discharges of just a few millivolts, far too weak to cause any harm to other fish. Instead, they are used to help navigate the environment, including locating the bottom-dwelling invertebrates that compose their diets. They may also be used to send signals between fish of the same species.[13] In addition to this low-level field, the electric eel also has the capability to produce much more powerful discharges to stun prey.[3]

Taxonomy

There are currently about 250 valid gymnotiform species in 34 genera and five families, with many additional species known but yet to be formally described.[14][15][16] The actual number of species in the wild is unknown.[17] Gymnotiformes is thought to be the sister group to the Siluriformes[18][19] from which they diverged in the Cretaceous period (about 120 million years ago).

The families are classified over suborders and superfamilies as below.[20][16]

Order Gymnotiformes

Suborder Gymnotoidei
Family Gymnotidae (banded knifefishes and electric eels)
Suborder Sternopygoidei
Superfamily Rhamphichthyoidea
Family Rhamphichthyidae (sand knifefishes)
Family Hypopomidae (bluntnose knifefishes)
Superfamily Apteronotoidea
Family Sternopygidae (glass and rat-tail knifefishes)
Family Apteronotidae (ghost knifefishes)

Distribution and habitat

Gymnotiform fishes inhabit freshwater rivers and streams throughout the humid Neotropics, ranging from southern Mexico to northern Argentina. They are nocturnal fishes. The families Gymnotidae and Hypopomidae are most diverse (numbers of species) and abundant (numbers of individuals) in small nonfloodplain streams and rivers, and in floodplain "floating meadows" of aquatic macrophytes (e.g., Eichornium, the Amazonian water hyacinth). Apteronotidae and Sternopygidae are most diverse and abundant in large rivers. Species of Rhamphichthyidae are moderately diverse in all these habitat types.

Evolution

Gymnotiformes are among the more derived members of Ostariophysi, a lineage of primary freshwater fishes. The only known fossils are from the Miocene about 7 million years ago (Mya) of Bolivia.[21]

Gymnotiformes has no extant species in Africa. This may be because they did not spread into Africa before South America and Africa split, or it may be that they were out-competed by Mormyridae, which are similar in that they also use electrolocation.[14]

Approximately 150 Mya, the ancestor to modern-day Gymnotiformes and Siluriformes were estimated to have convergently evolved ampullary receptors, allowing for passive electroreceptive capabilities.[22] As this characteristic occurred after the prior loss of electroreception among the subclass Neopterygii[23] after having been present in the common ancestor of vertebrates, the ampullary receptors of Gymnotiformes are not homologous with those of other jawed non-teleost species, such as chondricthyans.[24]

Gymnotiformes and Mormyridae have developed their electric organs and electrosensory systems (ESSs) through convergent evolution.[25] As Arnegard et al. (2005) and Albert and Crampton (2005) show,[26][27] their last common ancestor was roughly 140 to 208 Mya, and at this time they did not possess ESSs. Each species of Mormyrus (family: Mormyridae) and Gymnotus (family: Gymnotidae) have evolved a unique waveform that allows the individual fish to identify between species, genders, individuals and even between mates with better fitness levels.[28] The differences include the direction of the initial phase of the wave (positive or negative, which correlates to the direction of the current through the electrocytes in the electric organ), the amplitude of the wave, the frequency of the wave, and the number of phases of the wave.

One significant force driving this evolution is predation.[29] The most common predators of Gymnotiformes include the closely related Siluriformes (catfish), as well as predation within families (E. electricus is one of the largest predators of Gymnotus). These predators sense electric fields, but only at low frequencies, thus certain species of Gymnotiformes, such as those in Gymnotus, have shifted the frequency of their signals so they can be effectively invisible.[29][30][31]

Sexual selection is another driving force with an unusual influence, in that females exhibit preference for males with low-frequency signals (which are more easily detected by predators),[29] but most males exhibit this frequency only intermittently. Females prefer males with low-frequency signals because they indicate a higher fitness of the male.[32] Since these low-frequency signals are more conspicuous to predators, the emitting of such signals by males shows that they are capable of evading predation.[32] Therefore, the production of low-frequency signals is under competing evolutionary forces: it is selected against due to the eavesdropping of electric predators, but is favored by sexual selection due to its attractiveness to females. Females also prefer males with longer pulses,[28] also energetically expensive, and large tail lengths. These signs indicate some ability to exploit resources,[29] thus indicating better lifetime reproductive success.

Genetic drift is also a factor contributing to the diversity of electric signals observed in Gymnotiformes.[33] Reduced gene flow due to geographical barriers has led to vast differences signal morphology in different streams and drainages.[33]

See also

References

  1. ^ Froese, Rainer, and Daniel Pauly, eds. (2007). "Gymnotiformes" in FishBase. Apr 2007 version.
  2. ^ van der Sleen, P.; J.S. Albert, eds. (2017). Field Guide to the Fishes of the Amazon, Orinoco, and Guianas. Princeton University Press. pp. 322–345. ISBN 978-0691170749.
  3. ^ a b Ferraris, Carl J. (1998). Paxton, J.R.; Eschmeyer, W.N. (eds.). Encyclopedia of Fishes. San Diego: Academic Press. pp. 111–112. ISBN 0-12-547665-5.
  4. ^ Youngerman, Eric D.; Flammang, Brooke E.; Lauder, George V. (October 2014). "Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors". Zoology. 117 (5): 337–348. doi:10.1016/j.zool.2014.04.004. PMID 25043841.
  5. ^ a b Shirgaonkar, Anup A.; Curet, Oscar M.; Patankar, Neelesh A.; MacIver, Malcolm A. (1 November 2008). "The hydrodynamics of ribbon-fin propulsion during impulsive motion". Journal of Experimental Biology. 211 (21): 3490–3503. doi:10.1242/jeb.019224. PMID 18931321. S2CID 10911068.
  6. ^ Neveln, I. D.; Bale, R.; Bhalla, A. P. S.; Curet, O. M.; Patankar, N. A.; MacIver, M. A. (15 January 2014). "Undulating fins produce off-axis thrust and flow structures". Journal of Experimental Biology. 217 (2): 201–213. doi:10.1242/jeb.091520. PMID 24072799. S2CID 2656865.
  7. ^ a b c Neveln, I. D.; Bai, Y.; Snyder, J. B.; Solberg, J. R.; Curet, O. M.; Lynch, K. M.; MacIver, M. A. (1 July 2013). "Biomimetic and bio-inspired robotics in electric fish research". Journal of Experimental Biology. 216 (13): 2501–2514. doi:10.1242/jeb.082743. PMID 23761475. S2CID 14992273.
  8. ^ a b Xiong, Grace; Lauder, George V. (August 2014). "Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion". Zoology. 117 (4): 269–281. doi:10.1016/j.zool.2014.03.002. PMID 24925455.
  9. ^ Salazar, R.; Fuentes, V.; Abdelkefi, A. (January 2018). "Classification of biological and bioinspired aquatic systems: A review". Ocean Engineering. 148: 75–114. doi:10.1016/j.oceaneng.2017.11.012.
  10. ^ Jagnandan, Kevin; Sanford, Christopher P. (December 2013). "Kinematics of ribbon-fin locomotion in the bowfin, Amia calva". Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 319 (10): 569–583. doi:10.1002/jez.1819. PMID 24039242.
  11. ^ Albert, James S (2001). Species diversity and phylogenetic systematics of American knifefishes (Gymnotiformes, Teleostei). Museum of Zoology. hdl:2027.42/56433. OCLC 248781367.
  12. ^ Crampton, W.G.R. and J.S. Albert. 2006. Evolution of electric signal diversity in gymnotiform fishes. Pp. 641-725 in Communication in Fishes. F. Ladich, S.P. Collin, P. Moller & B.G Kapoor (eds.). Science Publishers Inc., Enfield, NH.
  13. ^ Fugère, Vincent; Ortega, Hernán; Krahe, Rüdiger (23 April 2011). "Electrical signalling of dominance in a wild population of electric fish". Biology Letters. 7 (2): 197–200. doi:10.1098/rsbl.2010.0804. PMC 3061176. PMID 20980295.
  14. ^ a b Albert, J.S., and W.G.R. Crampton. 2005. Electroreception and electrogenesis. Pp. 431-472 in The Physiology of Fishes, 3rd Edition. D.H. Evans and J.B. Claiborne (eds.). CRC Press.
  15. ^ Eschmeyer, W. N., & Fong, J. D. (2016). Catalog of fishes: Species by family/subfamily.
  16. ^ a b Ferraris Jr, Carl J.; de Santana, Carlos David; Vari, Richard P. (2017). "Checklist of Gymnotiformes (Osteichthyes: Ostariophysi) and catalogue of primary types". Neotropical Ichthyology. 15 (1). doi:10.1590/1982-0224-20160067.
  17. ^ Albert, J.S. and W.G.R. Crampton. 2005. Diversity and phylogeny of Neotropical electric fishes (Gymnotiformes). Pp. 360-409 in Electroreception. T.H. Bullock, C.D. Hopkins, A.N. Popper, and R.R. Fay (eds.). Springer Handbook of Auditory Research, Volume 21 (R.R. Fay and A. N. Popper, eds). Springer-Verlag, Berlin.
  18. ^ "Fink and Fink, 1996">Fink, Sara V.; Fink, William L. (August 1981). "Interrelationships of the ostariophysan fishes (Teleostei)". Zoological Journal of the Linnean Society. 72 (4): 297–353. doi:10.1111/j.1096-3642.1981.tb01575.x.
  19. ^ "Arcila et al., 2017">Arcila, Dahiana; Ortí, Guillermo; Vari, Richard; Armbruster, Jonathan W.; Stiassny, Melanie L. J.; Ko, Kyung D.; Sabaj, Mark H.; Lundberg, John; Revell, Liam J.; Betancur-R, Ricardo (13 January 2017). "Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life". Nature Ecology & Evolution. 1 (2): 20. doi:10.1038/s41559-016-0020. PMID 28812610. S2CID 16535732.
  20. ^ Nelson, Joseph, S.; Grande, Terry C.; Wilson, Mark V. H. (2016). Fishes of the World (5 ed.). John Wiley & Sons, Inc. ISBN 978-1118342336.
  21. ^ Albert, James S.; Fink, William L. (12 March 2007). "Phylogenetic relationships of fossil neotropical electric fishes (Osteichthyes: Gymnotiformes) from the upper Miocene of Bolivia". Journal of Vertebrate Paleontology. 27 (1): 17–25. doi:10.1671/0272-4634(2007)27[17:PROFNE]2.0.CO;2.
  22. ^ Crampton, William G. R. (2019). "Electroreception, electrogenesis and electric signal evolution". Journal of Fish Biology. 95 (1): 92–134. doi:10.1111/jfb.13922. ISSN 1095-8649.
  23. ^ Baker, Clare V. H.; Modrell, Melinda S.; Gillis, J. Andrew (2013-07-01). Krahe, Rüdiger; Fortune, Eric (eds.). "The evolution and development of vertebrate lateral line electroreceptors". Journal of Experimental Biology. 216 (13): 2515–2522. doi:10.1242/jeb.082362. ISSN 0022-0949. PMC 4988487. PMID 23761476.
  24. ^ Crampton, William G. R. (2019). "Electroreception, electrogenesis and electric signal evolution". Journal of Fish Biology. 95 (1): 92–134. doi:10.1111/jfb.13922. ISSN 1095-8649.
  25. ^ Hopkins, Carl D (1 December 1995). "Convergent designs for electrogenesis and electroreception". Current Opinion in Neurobiology. 5 (6): 769–777. doi:10.1016/0959-4388(95)80105-7. PMID 8805421. S2CID 39794542.
  26. ^ Albert, J. S., and W. G. R. Crampton. 2006. Electroreception and electrogenesis. Pp. 429-470 in P. L. Lutz, ed. The Physiology of Fishes. CRC Press, Boca Raton, FL.
  27. ^ Arnegard, Matthew E.; Bogdanowicz, Steven M.; Hopkins, Carl D. (February 2005). "Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry". Evolution. 59 (2): 324–343. doi:10.1111/j.0014-3820.2005.tb00993.x. PMID 15807419. S2CID 14178144.
  28. ^ a b Arnegard, Matthew E.; McIntyre, Peter B.; Harmon, Luke J.; Zelditch, Miriam L.; Crampton, William G. R.; Davis, Justin K.; Sullivan, John P.; Lavoué, Sébastien; Hopkins, Carl D. (1 September 2010). "Sexual Signal Evolution Outpaces Ecological Divergence during Electric Fish Species Radiation". The American Naturalist. 176 (3): 335–356. doi:10.1086/655221. PMID 20653442. S2CID 16787431.
  29. ^ a b c d Hopkins, C. D. (15 May 1999). "Design features for electric communication". Journal of Experimental Biology. 202 (10): 1217–1228. PMID 10210663.
  30. ^ Stoddard, Philip K. (July 1999). "Predation enhances complexity in the evolution of electric fish signals". Nature. 400 (6741): 254–256. Bibcode:1999Natur.400..254S. doi:10.1038/22301. PMID 10421365. S2CID 204994529.
  31. ^ Stoddard, Philip K. (1 September 2002). "The evolutionary origins of electric signal complexity". Journal of Physiology-Paris. 96 (5): 485–491. doi:10.1016/S0928-4257(03)00004-4. PMID 14692496. S2CID 6240530.
  32. ^ a b Stoddard, Philip K.; Tran, Alex; Krahe, Rüdiger (10 July 2019). "Predation and Crypsis in the Evolution of Electric Signaling in Weakly Electric Fishes". Frontiers in Ecology and Evolution. 7: 264. doi:10.3389/fevo.2019.00264. S2CID 195856052.
  33. ^ a b Picq, Sophie; Alda, Fernando; Bermingham, Eldredge; Krahe, Rüdiger (September 2016). "Drift-driven evolution of electric signals in a Neotropical knifefish". Evolution. 70 (9): 2134–2144. doi:10.1111/evo.13010. PMID 27436179. S2CID 1064883.

 title=
license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Gymnotiformes: Brief Summary

provided by wikipedia EN
 src= Despite the name, the Electric Eel is a type of knifefish

The Gymnotiformes /dʒɪmˈnɒtɪfɔːrmiːz/ are an order of teleost bony fishes commonly known as the Neotropical or South American knifefish. They have long bodies and swim using undulations of their elongated anal fin. Found almost exclusively in fresh water (the only exceptions are species that occasionally may visit brackish water to feed), these mostly nocturnal fish are capable of producing electric fields for navigation, communication, and, in the case of the electric eel (Electrophorus electricus), attack and defense. A few species are familiar to the aquarium trade, such as the black ghost knifefish (Apteronotus albifrons), the glass knifefish (Eigenmannia virescens), and the banded knifefish (Gymnotus carapo).

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Gymnotiformes

provided by wikipedia FR

Les Gymnotiformes forment un ordre de poissons téléostéens électriques.

Les noms communs qu'on trouve dans la littérature sont poissons électriques d'Amérique du Sud et poissons couteaux d'Amérique. Ce sont principalement des poissons d'eau douce et possédant des organes adaptés à la production de champs électriques.

Peut-être le plus connu est l'espèce d'anguille électrique (Electrophorus electricus), qui utilise des chocs électriques puissants (jusqu'à 600 volts) pour la chasse et sa défense. Les autres espèces connues dans le commerce aquariophile sont le poisson-couteau américain (Apteronotus albifrons), le poisson-couteau de verre (Eigenmannia virescens), et le poisson-couteau à bandes (Gymnotus carapo). Le poisson-couteau brun (Apteronotus leptorhynchus) est un modèle animal très prisé en neuroscience computationnelle.

Les gymnotiformes sont caractérisés par des électrorécepteurs dans la peau, un organe électrique (ou plusieurs) créant un champ électrique autour d'eux, un anus situé très à l'avant sous leurs opercules, une absence de nageoire caudale (queue), une longue nageoire anale, l'absence d'écailles, des yeux sous la peau, aucune réponse à la peur, aucune réponse de Schreckstoff (substance chimique d'alarme).

Les gymnotiformes sont principalement nocturnes. La plupart des gymnotiformes nagent en demeurant généralement le corps droit en ondulant leur nageoire anale. Leur système électrosensoriel leur permet de détecter les objets dans leur environnement (électrolocation) à la suite de modifications du champ électrique qu'ils produisent parce que les objets ont une impédance (résistance et capacitance) différente de l'eau. Ce même système leur permet aussi de communiquer avec leur congénères (électrocommuniation) et de détecter leurs proies.

Sur le plan évolutif, les gymnotiformes forment un groupe proche des siluriformes (poissons-chats).

Liste des familles

Selon ITIS:

Voir aussi

license
fr
copyright
http://creativecommons.org/licenses/by-sa/3.0/
original
visit source
partner site
wikipedia FR

Gymnotiformes: Brief Summary

provided by wikipedia FR

Les Gymnotiformes forment un ordre de poissons téléostéens électriques.

Les noms communs qu'on trouve dans la littérature sont poissons électriques d'Amérique du Sud et poissons couteaux d'Amérique. Ce sont principalement des poissons d'eau douce et possédant des organes adaptés à la production de champs électriques.

Peut-être le plus connu est l'espèce d'anguille électrique (Electrophorus electricus), qui utilise des chocs électriques puissants (jusqu'à 600 volts) pour la chasse et sa défense. Les autres espèces connues dans le commerce aquariophile sont le poisson-couteau américain (Apteronotus albifrons), le poisson-couteau de verre (Eigenmannia virescens), et le poisson-couteau à bandes (Gymnotus carapo). Le poisson-couteau brun (Apteronotus leptorhynchus) est un modèle animal très prisé en neuroscience computationnelle.

Les gymnotiformes sont caractérisés par des électrorécepteurs dans la peau, un organe électrique (ou plusieurs) créant un champ électrique autour d'eux, un anus situé très à l'avant sous leurs opercules, une absence de nageoire caudale (queue), une longue nageoire anale, l'absence d'écailles, des yeux sous la peau, aucune réponse à la peur, aucune réponse de Schreckstoff (substance chimique d'alarme).

Les gymnotiformes sont principalement nocturnes. La plupart des gymnotiformes nagent en demeurant généralement le corps droit en ondulant leur nageoire anale. Leur système électrosensoriel leur permet de détecter les objets dans leur environnement (électrolocation) à la suite de modifications du champ électrique qu'ils produisent parce que les objets ont une impédance (résistance et capacitance) différente de l'eau. Ce même système leur permet aussi de communiquer avec leur congénères (électrocommuniation) et de détecter leurs proies.

Sur le plan évolutif, les gymnotiformes forment un groupe proche des siluriformes (poissons-chats).

license
fr
copyright
http://creativecommons.org/licenses/by-sa/3.0/
original
visit source
partner site
wikipedia FR

김노투스목

provided by wikipedia 한국어 위키백과

김노투스목(Gymnotiformes) 또는 전기뱀장어목진골어류에 속하는 조기어류 의 하나이다. 신열대구전기뱀장어또는 남아메리카전기뱀장어 등으로 알려져 있다. 긴 몸을 가지고 있으며, 가늘고 긴 뒷지느러미를 굽이치며 헤엄친다. 민물에서만 발견되며, 대부분 야행성 어류이다. 방향을 찾거나 서로 연락을 취하기 위해 전기장을 만들 수 있으며, 전기뱀장어의 경우에는 다른 종을 공격하거나 방어하는 데 사용한다.

하위 과

김노투스목은 아래와 같이 분류한다.[1]

계통 분류

2016년 현재, 계통 분류는 다음과 같다.[2]

조기어류

다기어목

     

철갑상어목

신기어류 전골어류

아이아목

   

레피소스테우스목

    진골어류 당멸치상목

당멸치목

     

뱀장어목

     

여을멸목

   

밑보리멸목

        Osteoglossocephalai 골설어상목

히오돈목

   

골설어목

    Clupeocephala Otomorpha  

청어목

     

민머리치목

골표류

압치목

     

잉어목

     

카라신목

     

김노투스목

   

메기목

               

신진골어류

             

각주

  1. Nelson
  2. R. Betancur-R., E. Wiley, N. Bailly, A. Acero, M. Miya, G. Lecointre, G. Ortí: Phylogenetic Classification of Bony Fishes – Version 4 (2016)
license
ko
copyright
http://creativecommons.org/licenses/by-sa/3.0/