dcsimg
Image of Leidy's Comb Jelly
Creatures » » Animal » Comb Jellies » » Bolinopsidae »

Leidy's Comb Jelly

Mnemiopsis leidyi A. Agassiz 1865

Breeding Season

provided by Egg Characteristics and Breeding Season for Woods Hole Species
Woods Hole, Maine
license
cc-by-nc-sa-3.0
copyright
Donald P. Costello and Catherine Henley
bibliographic citation
Costello, D.P. and C. Henley (1971). Methods for obtaining and handling marine eggs and embryos. Marine Biological Laboratory, Woods Hole, MA (Second Edition)
author
Costello, D.P.
author
C. Henley

Care of Adults

provided by Egg Characteristics and Breeding Season for Woods Hole Species
Woods Hole, Maine
license
cc-by-nc-sa-3.0
copyright
Donald P. Costello and Catherine Henley
bibliographic citation
Costello, D.P. and C. Henley (1971). Methods for obtaining and handling marine eggs and embryos. Marine Biological Laboratory, Woods Hole, MA (Second Edition)
author
Costello, D.P.
author
C. Henley

Egg Characteristics

provided by Egg Characteristics and Breeding Season for Woods Hole Species
Woods Hole, Maine
license
cc-by-nc-sa-3.0
copyright
Donald P. Costello and Catherine Henley
bibliographic citation
Costello, D.P. and C. Henley (1971). Methods for obtaining and handling marine eggs and embryos. Marine Biological Laboratory, Woods Hole, MA (Second Edition)
author
Costello, D.P.
author
C. Henley

Fertilization and Cleavage

provided by Egg Characteristics and Breeding Season for Woods Hole Species
Woods Hole, Maine
license
cc-by-nc-sa-3.0
copyright
Donald P. Costello and Catherine Henley
bibliographic citation
Costello, D.P. and C. Henley (1971). Methods for obtaining and handling marine eggs and embryos. Marine Biological Laboratory, Woods Hole, MA (Second Edition)
author
Costello, D.P.
author
C. Henley

Living Material

provided by Egg Characteristics and Breeding Season for Woods Hole Species
Woods Hole, Maine
license
cc-by-nc-sa-3.0
copyright
Donald P. Costello and Catherine Henley
bibliographic citation
Costello, D.P. and C. Henley (1971). Methods for obtaining and handling marine eggs and embryos. Marine Biological Laboratory, Woods Hole, MA (Second Edition)
author
Costello, D.P.
author
C. Henley

Methods of Observation

provided by Egg Characteristics and Breeding Season for Woods Hole Species
Woods Hole, Maine
license
cc-by-nc-sa-3.0
copyright
Donald P. Costello and Catherine Henley
bibliographic citation
Costello, D.P. and C. Henley (1971). Methods for obtaining and handling marine eggs and embryos. Marine Biological Laboratory, Woods Hole, MA (Second Edition)
author
Costello, D.P.
author
C. Henley

Time Table of Development

provided by Egg Characteristics and Breeding Season for Woods Hole Species
Woods Hole, Maine
license
cc-by-nc-sa-3.0
copyright
Donald P. Costello and Catherine Henley
bibliographic citation
Costello, D.P. and C. Henley (1971). Methods for obtaining and handling marine eggs and embryos. Marine Biological Laboratory, Woods Hole, MA (Second Edition)
author
Costello, D.P.
author
C. Henley

Time Table of Development

provided by Egg Characteristics and Breeding Season for Woods Hole Species
Woods Hole, Maine

References

  • Agassiz, A., 1874. Embryology of the Ctenophorae. Mem. Amer. Acad. Arts and Sci, 10: 356-398.
  • Mayer, A. G., 1912. Ctenophores of the Atlantic coast of North America. Carn. Inst., Wash. Publ. 162.

license
cc-by-nc-sa-3.0
copyright
Donald P. Costello and Catherine Henley
bibliographic citation
Costello, D.P. and C. Henley (1971). Methods for obtaining and handling marine eggs and embryos. Marine Biological Laboratory, Woods Hole, MA (Second Edition)
author
Costello, D.P.
author
C. Henley

Associations

provided by EOL staff

Young of the burrowing anemone Edwardsiella lineata (formerly known as Edwardsia leidyi or Fagesia lineata as a consequence of taxonomic confusion, Daly 2002), which resemble pinkish tentacled worms, are parasitic in the guts of ctenophores, including Mnemiopsis leidyi (Gosner 1978). The ecological and developmental relationships among E. lineata, M. leidyi, and another ctenophore, Beroe ovata, were studied by Reitzel et al. (2007). They found that although E. lineata infects both of these ctenophores, E. lineata larvae proved far more successful at infecting M. leidyi than B. ovata. Furthermore, E. lineata parasites excised from M. leidyi exhibited greater developmental competence than did E. lineata excised from B. ovata. The authors found that, although E. lineata is efficiently transferred from M. leidyi to B. ovata when the latter preys upon the former, E. lineata larvae are not well adapted for parasitizing or feeding in the latter species. Their results strongly suggest that M. leidyi is the preferred host--and possibly the only suitable natural host--for E. lineata. Although in the wild B. ovata can become more heavily infested than M. leidyi with E. lineata, B. ovata nevertheless appears to be an inadvertent host that acquires E. lineata parasites principally, if not exclusively, from feeding on infected M. leidyi. Furthermore, E. lineata’s competence to complete development from the parasite to the adult polyp is affected by both its size and the terminal host it occupies. Development proceeds more quickly and successfully when M. leidyi is the terminal host. (Conveniently for researchers, when E. lineata is excised from its host, it undergoes a rapid developmental transformation, during which it morphs from the nonciliated, vermiform [worm-like] body plan it exhibits as a parasite into the ciliated, fusiform body plan typical of a planula larva. Remarkably, if provided with a second host, the planula can reinfect another ctenophore and revert to the parasite body plan, whereas if it is denied a second host, the planula can develop into a free-living polyp.) (Reitzel et al. 2007 and references therein)

Beroe ovata is a selective predator favoring M. leidyi in locations where the native ranges of these animals overlap, and along with B. ovata it has therefore been suggested as a biological control agent for invasive M. leidyi in the Black Sea (B. ovata has now established itself in much of the non-native range of M. leidyi, rendering planning for its possible use as a control agent largely academic). However, the combined effects of B. ovata and E. lineata on M. leidyi populations are difficult to predict. These effects could be strictly additive, or the 2 species might even act synergistically to drive M. leidyi populations more sharply downward. Either of these interactions could achieve the desired result of controlling M. leidyi. However, if E. lineata has a negative impact on B. ovata populations, particularly if E. lineata impacts B. ovata more negatively than it impacts M. leidyi, then the presence of E. lineata could undermine efforts to control M. leidyi using B. ovata. On the other hand, in the event that E. lineata has a similarly detrimental effect on both M. leidyi and B. ovata, the simultaneous deployment of E. lineata and B. ovata could serve as an effective control on M. leidyi populations that would be self-limiting, as B. ovata blooms could be controlled by the parasitic anemones. This last possibilty seems particularly important given that B. ovata may generalize its ecological niche to include feeding on other gelatinous zooplankton, including native ctenophores and jellyfish. Given the current level of understanding of interactions among these species, Reitzel et al. question the wisdom of any active effort to use E. lineata as a biological control agent against M. leidyi. (Reitzel et al. 2007)

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Behaviour

provided by EOL staff

When Mnemiopsis leidyi is disturbed it may produce bright green luminescent flashes along the combs (Gosner 1978), particularly in late summer (Pollock 1998).

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Comprehensive Description

provided by EOL staff

Mnemiopsis leidyi is a ctenophore that is native to the western Atlantic, but by the late 1980s was established as an invasive exotic in the Black Sea, presumably after crossing the Atlantic in ship ballast water (it has subsequently appeared in the Caspian, Aegean, Azov, Marmara, North, Baltic, Skagerrak, and Mediterranean Seas). It reached very large numbers and depleted stocks of zooplankton as well as fish eggs and larvae, triggering the crash of several fisheries. In 1997, however, another ctenophore native to the western Atlantic, Beroe ovata, was discovered in the northeastern Black Sea. Beroe ovata is known to feed on planktivorous ctenophores and, in particular, on M. leidyi. The arrival of B. ovata appears to have stabilized the Black Sea ecosystem, leading to a reduction in M. leidyi populations and subsequent recovery of plankton and fish populations. (Shiganova et al. 2003 and references therein)

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Development

provided by EOL staff

Most adult tentacle-bearing ctenophores (tentaculates) have an excellent ability to regenerate missing body regions (Coonfield 1937 and references therein; Henry and Martindale 2000 and references therein) and are capable of replacing all identified cell types and structures in their correct location regardless of which portions are removed or damaged. Henry and Martindale studied a phenomenon known as "post-regeneration" in Mnemiopsis leidyi and discussed the significance of their findings in terms of the organization of the ctenophore body plan and the mechanisms involved in cell fate specification. In post-regeneration, deficient embryos generate incomplete larval or adult body plans in which no embryonic regulation (self-correction) has apparently taken place. Subsequently, regeneration of the missing structures occurs in the larva or adult, which is somehow able to “detect” the missing structures, even though these were never present to begin with. Because no injury is required to initiate the post-regenerative effort (as would be necessary, by definition, for ordinary regeneration), the phenomenon of post-regeneration suggests that some intrinsic map of the complete body plan exists within these partial animals. The authors note that the beroids (atentaculates), which do not form tentacles during their development, are not capable of post-regeneration. They speculate about possible developmental mechanisms that might explain this difference between the tentaculate and atentaculate ctenophores. (Henry and Martindale 2000)

Henry and Martindale (2001) report on a study using cell lineage and cell deletion techniques to investigate cell interactions in key aspects of Mnemiopsis leidyi development.

Pang and Martindale (2008) isolated seven homeobox genes from M. leidyi and examined their expression through development. They found that most of these homeobox genes begin expression at gastrulation and that their expression patterns suggest a possible role in patterning of the tentacle apparati and pharynx.

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Distribution

provided by EOL staff

In its native range, Mnemiopsis leidyi is found from Cape Cod Bay (Massachusetts, U.S.A.) southward and is the most common ctenophore south of Cape Cod. It enters the nearly freshwater parts of estuaries such as Chesapeake Bay. (Gosner 1978)

Mnemiopsis leidyi is native to the Atlantic coast of the United States, but over the past several decades it has invaded the Black, Caspian, Aegean, Azov, Marmara, North, Baltic, and Skagerrak Seas and has recently been reported to be established in the Mediterranean Sea (Faasse and Bayha 2006; Javidpour et al. 2006; Boersma et al. 2007; Reitzel et al. 2007 and references therein; Fuentes et al. 2010; Reusch et al. 2010 and references therein).

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Ecology

provided by EOL staff

Kremer (1994) reviewed the ecology of Mnemiopsis leidyi and M. mccradyi in Atlantic and Gulf of Mexico coastal waters from Cape Cod to Texas.

In the invaded areas of the Black, Azov and Caspian Seas, large populations of Mnemiopsis leidyi have contributed to major ecological regime shifts from a pelagic system dominated by planktivorous fish to one dominated by gelatinous plankton, including a total collapse of the pelagic fisheries in the 1990s (Shiganova and Bulgakova 2000; Oguz et al. 2008).

In the early 1980s, M. leidyi was introduced to the Black Sea. By 1988, it had spread across the entire Sea and underwent a population explosion in the fall of 1989, with populations fluctuating dramatically in subsequent years. Huge M. leidyi populations decreased the biomass, density, and species diversity of edible zooplankton as well as fish eggs and larvae, the main food of M. leidyi. This, in turn, caused declines in stocks of planktivorous fish (such as anchovy [Engraulis encrasicolus ponticus], horse mackerel [Trachurus mediterraneus ponticus], and, to a lesser extent, sprat [Sprattus sprattus phalericus]). Declines in these fish populations led to declines in piscivorous fish and dolphins feeding mostly on anchovy and sprat. Mnemiopsis leidyi expanded from the Black Sea to the Seas of Azov and Marmara and were regularly carried out to the Aegean Sea with the Black Sea currents. In 1999, M. leidyi was introduced into the Caspian Sea, apparently, with ballast waters of oil tankers. An important factor permitting the explosion of M. leidyi populations was the lack of a predator in its new range. In 1997, however, another ctenophore native to the western Atlantic, Beroe ovata, was discovered in the northeastern Black Sea. Beroe ovata is known to feed on planktivorous ctenophores and, in particular, on M. leidyi. The arrival of Beroe ovata appears to have stabilized the Black Sea ecosystem, leading to a reduction in M. leidyi populations and subsequent recovery of plankton and fish populations. (Shiganova et al. 2003 and references therein)

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Morphology

provided by EOL staff

Mnemiopsis leidyi has a somewhat flattened oval body with lobes exceeding the body length; it is brilliantly luminescent (Gosner 1978).

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Phylogeography

provided by EOL staff

Reusch et al. (2001) used microsatellites to infer the geographic origins of invasive Mnemiopsis leidyi in Eurasia. They concluded that the Mnemiopsis invading the Black and Caspian Seas in the 1980s and 1990s originated from within or close to the Gulf of Mexico, whereas the 2006 invasion of the North and Baltic Seas could be traced directly to the New England region of the United States. Genetic diversity in the Baltic Sea was similar to that in New England, but diversity in the North Sea was reduced, supporting the hypothesis that this ctenophore intitially invaded northern Europe via a Baltic port. There has been some suggestion that Mnemiopsis south of Cape Hatteras, North Carolina (U.S.A.) are M. mccradyi rather than M. leidyi, which would mean that the Mnemiopsis that invaded the Black and Caspian Seas were actually M. mccradyi, but so far most evidence seems to indicate that this is not the case and that in fact all the Eurasian Mnemiopsis invasions have involved M. leidyi (Reusch et al. 2010 and references therein). More generally, Gorokhova and Lehtiniemi (2010) suggested that the identification of ctenophores in the Baltic Sea as Mnemiopsis has not been approached with sufficient rigor, a charge vigorously denied by Javidpour et al. (2010). Faasse and Bayha (2006) also emphasize the care that must be taken in identifying ctenophores, ideally using both morphological and molecular analyses, and suggest that M. leidyi may have been present in Dutch waters for several years prior to their report of its presence, having previously been misidentified as the morphologically similar Bolinopsis infundibulum.

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Risk Statement

provided by EOL staff

According to McNamara et al. (2010), in its native range along the mid-Atlantic coast of the US, Mnemiopsis leidyi appears to be increasing in abundance and undergoing shifts in its historical seasonal distribution. Recent increases in ctenophore abundance in a variety of areas have been attributed to various marine ecosystem alterations, including localized warming of seawater masses (but apparently not Long Island estuaries, which were the focus of studies by McNamara et al.) and the removal of ctenophore predators (such as butterfish) and competitors (such as zooplanktivorous fishes) by overfishing (McNamara et al. 2010 and references therein). McNamara et al. studied shifting M. leidyi abundance in Long Island (New York, U.S.A.) estuaries and its implications for top-down control of the plankton community. They estimated that at its highest densities M. leidyi can remove an overall average of 20 to 89% per day of bivalve mollusk veliger larvae and other zooplankton taxa, including adult copepods, nauplii (early larvae of certain crustaceans), and tintinnids (a group of ciliate protozoans). The authors suggest that increasing ctenophore abundance, especially during a period when they were not historically abundant (i.e., June) may have significant consequences for species which spawn at this time. For example, current populations of M. leidyi represent a major source of larval mortality for bivalves and may inhibit efforts to recover viable populations of commercially important shellfish such as the hard clam Mercenaria mercenaria in Long Island estuaries.

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Size

provided by EOL staff

Mnemiopsis leidyi reaches around 10 cm (Gosner 1978).

license
cc-by-nc-sa-3.0
copyright
Shapiro, Leo
author
Shapiro, Leo
original
visit source
partner site
EOL staff

Mnemiopsis

provided by wikipedia EN

Mnemiopsis leidyi, the warty comb jelly or sea walnut,[1] is a species of tentaculate ctenophore (comb jelly). It is native to western Atlantic coastal waters, but has become established as an invasive species in European and western Asian regions. Three species have been named in the genus Mnemiopsis, but they are now believed to be different ecological forms of a single species M. leidyi by most zoologists.[2]

Description and ecology

Mnemiopsis have an oval-shaped and transparent lobed body, with four rows of ciliated combs that run along the body vertically and glow blue-green when disturbed. They have several feeding tentacles. Unlike cnidarians, Mnemiopsis does not sting. Their body comprises 97% water. They have a maximum body length of roughly 7–12 centimetres (3–5 in) and a diameter of 2.5 centimetres (1 in).

It is euryoecious, tolerating a wide range of salinity (2 to 38 psu), temperature (2–32 °C or 36–90 °F), and water quality.

Mnemiopsis is a carnivore that consumes zooplankton including crustaceans,[3] other comb jellies, and eggs and larvae of fish. Many of its predators are vertebrates, including birds and fish. Others are members of gelatinous zooplankton such as Beroe ctenophores and various Scyphozoa (jellyfish).

The comb jelly has the capacity for self-fertilization, as they are hermaphroditic. They have gonads that contain the ovary and spermatophore bunches in their gastrodermis. It carries 150 eggs along each meridional canal. Eggs and sperm are released into the water column where fertilization takes place. The spawning commences at late evening or at 1:00 or 2:00 a.m. The spawning eggs develop a thick outer layer within a minute of encountering seawater. As many as 10,000 eggs are produced from large specimens in areas with abundant prey. Egg production can start when the animals reach about 15 mm in length. Egg production increases with ctenophore size, and it is unclear when senescence occurs.

It has a transient anus, which means that it appears only during defecation. There is no permanent connection between the gut and the rear of the body. Instead, as waste accumulates, part of the gut starts to balloon out until it touches the outer layer, or epidermis. The gut then fuses with the epidermis, forming an anal opening. Once excretion is complete, the process is reversed and the anus vanishes. The animals defecate at regular intervals: once an hour in the 5-centimetre-long adults, and once every 10 minutes or so in the larvae. [4][5]

The species moves so slowly that it is referred to as "sea walnut".[6]

As an invasive species

Mnemiopsis leidyi

1980s – Black Sea

Mnemiopsis leidyi was introduced in the Black Sea in the 1980s, where only one species of comb jelly, the small sea gooseberry Pleurobrachia pileus occurred until then. The most likely cause of its introduction is accidentally by merchant ships' ballast water. The first Black Sea record was in 1982.[7]

By 1989, the Black Sea population had reached the highest level, with some 400 specimens per m3 of water (>10 animals/cubic foot) in optimal conditions.[3] Afterwards, due to depletion of foodstocks resulting in lower carrying capacity, the population dropped somewhat.

In the Black Sea, M. leidyi eats eggs and larvae of pelagic fish. It caused a dramatic drop in fish populations, notably the commercially important anchovy Engraulis encrasicholus (known locally as hamsi, hamsiya, hamsa, etc.), by competing for the same food sources and eating the young and eggs.[3] Biological control was tried with Beroe ovata, another comb jelly, with some degree of success; it appears as if a fairly stable predator-prey dynamic has been reached.[8]

1999 – Caspian Sea

In 1999 the species was introduced in the Caspian Sea via the Unified Deep Water System of European Russia. The establishment of this population led to a 60% reduction in the number of sprat, which in turn led to a reduction in the population of sturgeon and seals.[9]

2006 – North and Baltic Seas

Since then, the species has apparently spread throughout the Mediterranean basin and the northwestern Atlantic. In 2006, it was first recorded in the North Sea,[10] and since October 17, 2006[11] in the western Baltic Sea, namely the Kiel Fjord and The Belts. Up to 100 animals per cubic metre were counted in the Baltic, whereas the population density in the North Sea was at a much lower 4 animals/m3 at most.[3]

M. leidyi at the Monterey Bay Aquarium

One year later, the Baltic population of M. leidyi was found to have spread east to the Gotland Basin and the Bay of Puck.[12] The impact of the species on the already heavily stressed Baltic ecosystem is unknown. The species overwinters in the deep waters where the temperature does not drop below 4 °C (39 °F); the fact that the Baltic is heavily stratified, with the waters above and below the halocline mixing little, is believed to aid its survival.[3]

Apart from the widespread P. pileus, three comb jelly species occasionally drift into the Baltic from the North Sea but do not seem to be present as a stable population of significant size: Bolinopsis infundibulum, Beroe cucumis and Beroe gracilis. The second species might potentially be used for biological control.[2][3]

The route of dispersal of M. leidyi to the North Sea/Baltic region is unknown. It might have occurred naturally by drifting individuals, or with ballast water of ships, either from its natural range or from the Black Sea, via the Mediterranean and eastern Atlantic.[13] At least technically possible given the species' euryhaline habits is an alternative route of dispersal through continental Europe, being carried with ballast water in ships travelling from the Black Sea to the Rhine Estuary via the Rhine-Main-Danube Canal. The latter route is known to be the point of entry into continental Europe for numerous invasive freshwater neozoons from the Ponto-Caspian region, such as the zebra mussel, the quagga mussel, the amphipods Dikerogammarus villosus and Chelicorophium curvispinum, and the polychaete Hypania invalida.

Genomics

Both the nuclear and mitochondrial genomes of Mnemiopsis leidyi have been sequenced, providing insight into the evolutionary position of Ctenophora (comb jellies).[14] [15]

In the original 2013 paper reporting the nuclear genome sequence, phylogenetic analysis of the presence and absence of genes, introns, and amino acid alignments suggested that the comb jelly is the sister lineage to the rest of all animals.[14][16] However, a 2015 study applied different methodologies and found support for Porifera as the sister group to all other animals, and confirmed findings from the original study that amino acid alignments gave mixed support for this hypothesis.[17] The position of Ctenophora and Porifera is currently being actively debated.[18][19]

Its mitochondrion shows several interesting features.[20] It is 10 kilobases in length making it the smallest animal mitochondrial DNA sequence known to date. It has lost at least 25 genes, including MT-ATP6 and all the tRNA genes. The atp6 gene has been relocated to the nuclear genome and has acquired introns and a mitochondrial targeting presequence. All tRNA genes have been genuinely lost along with nuclear-encoded mitochondrial aminoacyl tRNA synthetases. The mitochondrial rRNA molecules possess little similarity with their homologs in other organisms and have highly reduced secondary structures.

The genome of Mnemiopsis leidyi appears to lack recognizable microRNAs, as well as the nuclear proteins Drosha and Pasha, which are critical to canonical microRNA biogenesis. It is the only animal thus far reported to be missing Drosha. MicroRNAs play a vital role in the regulation of gene expression in all non-ctenophore animals investigated thus far except for Trichoplax adhaerens, one of three known members of the phylum Placozoa.[21]

In Mnemiopsis leidyi, NOS is present both in adult tissues and differentially expressed in later embryonic stages suggesting the involvement of NO in developmental mechanisms. Ctenophores also possess soluble guanylyl cyclases as potential NO receptors with weak but differential expression across tissues. Combined, these data indicate that the canonical NO-cGMP signaling pathways existed in the common ancestor of animals and could be involved in the control of morphogenesis, cilia activities, feeding and different behaviors. [22]

References

  1. ^ "Common Names for Sea Walnut (Mnemiopsis leidyi)". Encyclopedia of Life. Retrieved 13 December 2013.
  2. ^ a b Hansson, Hans G. (2006). "Ctenophores of the Baltic and adjacent Seas - the invader Mnemiopsis is here!". Aquatic Invasions. 1 (4): 295–298. doi:10.3391/ai.2006.1.4.16.
  3. ^ a b c d e f Kube, Sandra; Postel, Lutz; Honnef, Christopher; Augustin, Christina B. (2007). "Mnemiopsis leidyi in the Baltic Sea - distribution and overwintering between autumn 2006 and spring 2007". Aquatic Invasions. 2 (2): 137–145. doi:10.3391/ai.2007.2.2.9.
  4. ^ Michael Le Page (March 2019). "Animal with an anus that comes and goes could reveal how ours evolved". New Scientist.
  5. ^ Tamm, Sidney L. (2019). "Defecation by the ctenophore Mnemiopsis leidyi occurs with an ultradian rhythm through a single transient anal pore". Invertebrate Biology. 138: 3–16. doi:10.1111/ivb.12236.
  6. ^ Abigail Tucker (September 2012). "How Can a Jellyfish This Slow Be So Deadly? It's Invisible". Smithsonian Magazine.
  7. ^ Zaika, V. Ye.; Sergeyeva, N. G. (1990). "Morphology and development of Mnemiopsis mccradyi (Ctenophora, Lobata) in the Black Sea". Zoologicheskii Zhurnal. 69 (2): 5–11.
  8. ^ Kideys, Ahmet E (2002). "Fall and rise of the Black Sea ecosystem". Science. 297 (5586): 1482–1484. doi:10.1126/science.1073002. PMID 12202806. S2CID 43042123.
  9. ^ Zarina Akhmedova (November 8, 2010). "Борьба против вредоносного мнемиопсиса в водах Каспия дала первые результаты - минэкологии" [Initial Results in the Fight Against the Malicious Mnemiopsis in Caspian Waters – Ministry of the Environment]. Trend News Agency. Retrieved September 14, 2016. (in Russian)
  10. ^ Faasse, Marco A.; Bayha, Keith M. (2006). "The ctenophore Mnemiopsis leidyi A. Agassiz 1865 in coastal waters of the Netherlands: an unrecognized invasion?". Aquatic Invasions. 1 (4): 270–277. doi:10.3391/ai.2006.1.4.9.
  11. ^ Javidpour, Jamileh; Sommer, Ulrich; Shiganova, Tamara A. (2006). "First record of Mnemiopsis leidyi A. Agassiz 1865 in the Baltic Sea". Aquatic Invasions. 1 (4): 299–302. doi:10.3391/ai.2006.1.4.17.
  12. ^ "Invasion der Rippenquallen" [Invasion of the Comb Jellies] (in German). Scinexx. Retrieved January 15, 2011.
  13. ^ Oliveira, Otto M. P. (2007). "The presence of the ctenophore Mnemiopsis leidyi in the Oslofjorden and considerations on the initial invasion pathways to the North and Baltic Seas". Aquatic Invasions. 2 (3): 185–189. doi:10.3391/ai.2007.2.3.5.
  14. ^ a b Ryan, J. F.; Pang, K.; Schnitzler, C. E.; Nguyen, A.-D.; Moreland, R. T.; Simmons, D. K.; Koch, B. J.; Francis, W. R.; Havlak, P.; Smith, S. A.; Putnam, N. H.; Haddock, S. H. D.; Dunn, C. W.; Wolfsberg, T. G.; Mullikin, J. C.; Martindale, M. Q.; Baxevanis, A. D. (2013). "The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution". Science. 342 (6164): 1242592. doi:10.1126/science.1242592. PMC 3920664. PMID 24337300.
  15. ^ Moreland, R.T.; Nguyen, A.-D.; Ryan, J.F.; Baxevanis, A.D. (2020). "The Mnemiopsis Genome Project Portal: integrating new gene expression resources and improving data visualization". Database (Oxford). 2020. doi:10.1093/database/baaa029. PMC 7211034. PMID 32386298.
  16. ^ Rokas, A. (2013). "My Oldest Sister Is a Sea Walnut?". Science. 342 (6164): 1327–1329. Bibcode:2013Sci...342.1327R. doi:10.1126/science.1248424. PMID 24337283. S2CID 33619949.
  17. ^ Pisani, Davide; Pett, Walker; Dohrmann, Martin; Feuda, Roberto; Rota-Stabelli, Omar; Philippe, Hervé; Lartillot, Nicolas; Wörheide, Gert (2015-11-30). "Genomic data do not support comb jellies as the sister group to all other animals". Proceedings of the National Academy of Sciences of the United States of America. 112 (50): 15402–7. Bibcode:2015PNAS..11215402P. doi:10.1073/pnas.1518127112. PMC 4687580. PMID 26621703.
  18. ^ Telford MJ, Moroz LL, Halanych KM (2016). "Evolution: A sisterly dispute". Nature. 529 (7586): 286–7. Bibcode:2016Natur.529..286T. doi:10.1038/529286a. PMID 26791714.
  19. ^ Halanych KM, Whelan NV, Kocot KM, Kohn AB, Moroz LL (2016). "Miscues misplace sponges". Proceedings of the National Academy of Sciences of the United States of America. 113 (8): E946–7. Bibcode:2016PNAS..113E.946H. doi:10.1073/pnas.1525332113. PMC 4776479. PMID 26862177.
  20. ^ Pett, W.; Ryan, J.F.; Pang, K.; Mullikin, J.C.; Martindale, M.Q.; Baxevanis, A.D.; Lavrov, D.V. (2011). "Extreme mitochondrial evolution in the ctenophore Mnemiopsis leidyi: Insight from mtDNA and the nuclear genome". Mitochondrial DNA. 22 (4): 130–142. doi:10.3109/19401736.2011.624611. PMC 3313829. PMID 21985407.
  21. ^ Maxwell, E.K.; Ryan, J.F.; Schnitzler, C.E.; Browne, W.E.; Baxevanis, A.D. (December 2012). "MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi". BMC Genomics. 13 (1): 714. doi:10.1186/1471-2164-13-714. PMC 3563456. PMID 23256903.
  22. ^ Moroz, Leonid; Mukherjee, Krishanu; Romanova, Daria (2023). "Nitric oxide signaling in ctenophores". Front. Neurosci. 17: 1125433. doi:10.3389/fnins.2023.1125433.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Mnemiopsis: Brief Summary

provided by wikipedia EN

Mnemiopsis leidyi, the warty comb jelly or sea walnut, is a species of tentaculate ctenophore (comb jelly). It is native to western Atlantic coastal waters, but has become established as an invasive species in European and western Asian regions. Three species have been named in the genus Mnemiopsis, but they are now believed to be different ecological forms of a single species M. leidyi by most zoologists.

license
cc-by-sa-3.0
copyright
Wikipedia authors and editors
original
visit source
partner site
wikipedia EN

Alien species

provided by World Register of Marine Species
The sea walnut Mnemiopsis leidyi is an infamous predator of zooplankton and fish eggs. The species’ natural area of distribution is along the Atlantic coast of North- and South-America. In the 1980's the sea walnut was accidently introduced in the Black Sea as a stowaway in ballast water of cargo ships. The introduction led to a collapse of the ecosystem. Since a couple of years, the sea walnut is also present in the North Sea, and we now have to wait and see what ecological consequences it will bring to the region.

Reference

VLIZ Alien Species Consortium. (2010).

license
cc-by-4.0
copyright
WoRMS Editorial Board
contributor
Vandepitte, Leen [email]

Alien species

provided by World Register of Marine Species
De Amerikaanse ribkwal Mnemiopsis leidyi is een beruchte predator van dierlijk plankton en viseieren. Deze soort kwam oorspronkelijk enkel voor langs de Atlantische kusten van Noord- en Zuid-Amerika, maar werd in de jaren 1980 via het ballastwater van vrachtschepen per ongeluk geïntroduceerd in de Zwarte Zee. De introductie leidde tot de ineenstorting van het ecosysteem. Sinds enkele jaren komt de Amerikaanse ribkwal nu ook voor in de Noordzee en het is afwachten en zien wat de ecologische gevolgen bij ons zullen zijn.
license
cc-by-4.0
copyright
WoRMS Editorial Board
contributor
Vandepitte, Leen [email]

Distribution

provided by World Register of Marine Species
Virginian, southside of Cape Cod to Cape Hatteras

Reference

North-West Atlantic Ocean species (NWARMS)

license
cc-by-4.0
copyright
WoRMS Editorial Board
contributor
Kennedy, Mary [email]