dcsimg
Image of Arbor-vitae
Creatures » » Plants » » Gymnosperms » » Cypress Family »

Arbor Vitae

Thuja occidentalis L.

Common Names

provided by Fire Effects Information System Plants
northern white-cedar
northern whitecedar
white-cedar
white cedar
eastern white-cedar
eastern arborvitae
arborvitae
arbor vitae
swamp-cedar
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Cover Value

provided by Fire Effects Information System Plants
More info for the term: cover

Stands of northern white-cedar provide thermal cover for white-tailed
deer, moose, and black bear [4,9,39].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Description

provided by Fire Effects Information System Plants
More info for the terms: monoecious, tree

Northern white-cedar is a monoecious, native, evergreen tree with a
narrow, almost columnar crown. Branches on open-grown trees extend to
the ground. The trunk is often divided into two or more secondary
trunks of equal size. Northern white-cedar has scalelike foliage and
fibrous, sometimes shredding bark [25,26].

At maturity northern white-cedar is 40 to 50 feet (12-15 m) tall and 12
to 24 inches (30-60 cm) in d.b.h. Infrequently it reaches heights of 70
to 80 feet (21-24 m) and diameters of 48 to 60 inches (120-150 cm) [26].
This species is extremely slow growing; after 50 years, it might reach
40 feet (12 m) in height on good sites, but only 15 feet (4.6 m) or less
on poor sites [27].

Northern white-cedar reaches ages in excess of 800 years [5,32]. Two
trees on the Niagara Escarpment in southern Ontario were dated at 935
and 1,032 years [32].

Seedlings develop deep roots in well-drained soil and shallow roots in
saturated soil. With age, northern white-cedar develops a widespreading
root system which is well adapted to secure water and nutrients from
cracks in rocks [26].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Distribution

provided by Fire Effects Information System Plants
Northern white-cedar occurs in southeastern Canada and the adjacent
northern United States. It is distributed from southwestern Nova
Scotia, Prince Edward Island, New Brunswick, the Gaspe Peninsula in
Quebec, and Anticosti Island in the Gulf of Saint Lawrence; west to
northern Ontario and southeastern Manitoba; south to southeastern
Minnesota and northern Illinois; and east through extreme northwestern
Indiana, Michigan, and the New England states. Island populations occur
in the Appalachian Mountains in western Pennsylvania, West Virginia,
Virginia, and eastern Tennessee. Local populations also occur in
west-central Manitoba, Wisconsin, Minnesota, Illinois, and Ohio [26,33].
Historical evidence indicates that northern white-cedar is native to
North Carolina as well, but no known native population occurs there now
[10].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Fire Ecology

provided by Fire Effects Information System Plants
More info for the terms: cover, crown fire, density, fire regime, forest, fuel, organic soils, peat, seed

Northern white cedar is highly susceptible to fire because of thin bark,
shallow roots, and high oil content [26]. In the understory of a pine,
aspen, or birch (Betula spp.) forest, northern white-cedar acts as a fuel
ladder, carrying fire into the overstory [23].

The risk of fire on most northern white-cedar sites is low, but fires
occasionally originate on drier sites and spread into northern
white-cedar stands [34]. Forested peatlands with a moss ground cover
will not carry spring fires because of a high water table, but forested
fens with a ground cover of sedges (Carex spp.) and grasses carry fire
in the spring when the grasses and sedges are dry. Most fires in
peatlands with a moss ground cover occur in July, August, or September.
Given sufficient winds, northern white-cedar stands can carry a crown
fire [22].

Northern white-cedar reproduces well on moist organic soils exposed by
fire if a seed source is nearby. Many northern white-cedar forests in
the Lake States originated after fire [14]. However, if the peat burns
and the humus is destroyed, northern white-cedar may not become
established for a long time [34].

Vogl [47] classifies northern white-cedar as a fire-initiated species in
which fire simultaneously terminates and initiates a long-lived species.
Fires are infrequent and usually severe. The longest lived specimens
occur in locations where fire is infrequent or nonexistent because of
rocky substrate, sparse ground cover, or low stand density [5].
Examples of such sites include the lakeshores and islands of Lake
Duparquet, Quebec [6] and the Niagara Escarpment in Ontario [32].
Recurring fire may be responsible for the exclusion of northern
white-cedar from some sites [6].

FIRE REGIMES :
Find fire regime information for the plant communities in which this
species may occur by entering the species name in the FEIS home page under
"Find FIRE REGIMES".
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Fire Management Considerations

provided by Fire Effects Information System Plants
More info for the terms: cover, prescribed fire

Prescribed fire is recommended after northern white-cedar harvest unless
there is ample advance regeneration or if the organic soil is
unsaturated. Fire removes the heavy slash that prevents regeneration
and also prepares a favorable seedbed [27,46]. However, deep ground
fires can start if the soil is not saturated [27].

If removing slash is the primary objective, prescribed fires are usually
conducted under the following conditions: 3 to 10 days after a rainfall
of more than 0.1 inch (0.3 cm), a minimum relative humidity of 30 to 60
percent, a maximum air temperature of 60 to 90 degrees Fahrenheit (16-32
deg C), and a maximum wind speed of 5 to 15 miles per hour (8-24 km/h).
If the objective is to remove slash and prepare a seedbed, the fire must
be hotter and is usually conducted under the following conditions: at
least 7 days since a rainfall of more than 0.1 inch (0.3 cm), less than
45 percent relative humidity, air temperatures greater than or equal to
80 degrees Fahrenheit (27 deg C), and 5 to 15 miles per hour (8-24 km/h)
wind speed [27].

The effect of three different slash treatments on northern white-cedar
regeneration after winter clearcutting was investigated. The treatments
were (1) a prescribed broadcast fire in August to burn the slash, (2)
skidding entire trees out of the study area and delimbing elsewhere, and
(3) leaving the slash in place. Five growing seasons after
clearcutting, northern white-cedar less than or equal to 23.6 inches (60
cm) tall averaged 33.3 stems per miliacre (8.2 stems/sq m) on burned
plots, and 11.5 and 22.2 stems per miliacre (2.8 and 5.5 stems/sq m) on
full-tree skidded and slash-left plots, respectively. Ten growing
seasons after clearcutting, northern white-cedar had increased to 40.2
stems per miliacre (9.9 stems/sq m) on burned plots but showed no change
on the other treatment plots [46].

Northern white-cedar slash is a fire hazard for 20 to 30 years because
of its resistance to decay [42].

Prescribed fire can be used to eliminate northern white-cedar that
invades fens in the absence of fire. A low intensity fall fire (rarely
exceeding 70 BTU/sec/sq ft) resulted in a statistically significant
reduction in the percent cover of northern white-cedar for three
postfire growing seasons. Annual prescribed burning is recommended for
restoring fens [40,41].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Growth Form (according to Raunkiær Life-form classification)

provided by Fire Effects Information System Plants
More info on this topic.

More info for the term: phanerophyte

Phanerophyte
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Habitat characteristics

provided by Fire Effects Information System Plants
More info for the terms: association, bog, ecotype, litter, minerotrophic, peat, seed, shrub, swamp, tree

Northern white-cedar grows on both uplands and lowlands. The uplands
are primarily seepage areas, old fields, and limestone cliffs and
boulder fields. The lowland sites include swamps, streambanks, and
lakeshores. Northern white-cedar occurs from near sea level to more
than 2,000 feet (600 m) in elevation. It grows up to 4,270 feet (1,300
m) in the Adirondack Mountains in New York on sites where water is
flowing over rocks [26].

On lowland sites, northern white-cedar generally grows where there is a
strong flow of moderately mineral-rich soil water of near neutral pH
(minerotrophic and weakly minerotrophic swamps) and where the organic
peat is moderately to well decomposed. The peat is usually 1 to 6 feet
(0.3-1.8 m) thick and contains rotten wood. Northern white-cedar grows
best where soils are neutral to moderately alkaline [19,24,26].

On upland sites, northern white-cedar grows primarily in calcareous
soils including calcareous clays and shallow loam overlying broken
limestone [26].

Habeck [50] has suggested that northern white-cedar growing in limestone
uplands is an ecotype distinct from wet lowland northern white-cedar.
Specimens growing on cliffs tend to be deformed with multiple leaders
and twisted trunks, whereas those in wet lowlands tend to be more erect
with well-defined trunks. However, four studies that looked at tree
morphology [8], seed morphology [7], growth patterns [36], and xylem
water potential [12] found no evidence of ecotypic variation. There
tended to be more variation within a single site than between lowland
and upland sites. Seedlings, from seeds collected from the two
contrasting habitats, were grown under different moisture conditions.
Xerically grown seedlings had significantly (p less than 0.05) more negative xylem
water potential than did seedlings grown under moist conditions,
independent of seed origin. The seedlings acclimated to the conditions
and demonstrated that northern white-cedar has broad physiological
tolerance to habitat moisture [12].

Overstory associates not mentioned in DISTRIBUTION AND OCCURRENCE
include white spruce (Picea glauca), quaking aspen (Populus
tremuloides), balsam poplar (P. balsamifera), and bigtooth aspen. Shrub
associates on good sites include speckled alder, mountain maple (Acer
spicatum), red-osier dogwood (Cornus stolonifera), and American fly
honeysuckle (Lonicera canadensis). Bog Labrador-tea (Ledum
groenlandicum), blueberries (Vaccinium spp.), and wintergreen
(Gaultheria procumbens) occur on poorer sites. Creeping wintergreen (G.
hispidula) occurs on both good and poor sites [26].

Herbs that occur in swamps with northern white-cedar include dwarf red
blackberry (Rubus pubescens), Canada mayflower (Maianthemum canadense),
woodfern (Dryopteris spp.), bunchberry dogwood (Cornus canadensis),
false Solomons-seal (Smilacina spp.), and pitcherplant (Sarracenia
purpurea) [26]. Dwarf lake iris (Iris lacustris), a federally threatened
species endemic to the northern shores of Lake Michigan and Lake Huron,
is found in association with narrow beach strands of northern
white-cedar [43].

The groundcover in northern white-cedar swamp forests includes sphagnum
and other mosses, liverworts, decaying logs, and litter [26].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Habitat: Cover Types

provided by Fire Effects Information System Plants
More info on this topic.

This species is known to occur in association with the following cover types (as classified by the Society of American Foresters):

5 Balsam fir
12 Black spruce
13 Black spruce - tamarack
21 Eastern white pine
23 Eastern hemlock
24 Hemlock - yellow birch
30 Red spruce - yellow birch
32 Red spruce
33 Red spruce - balsam fir
35 Paper birch - red spruce - balsam fir
37 Northern white-cedar
38 Tamarack
39 Black ash - American elm - red maple
108 Red maple
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Habitat: Ecosystem

provided by Fire Effects Information System Plants
More info on this topic.

This species is known to occur in the following ecosystem types (as named by the U.S. Forest Service in their Forest and Range Ecosystem [FRES] Type classification):

FRES10 White - red - jack pine
FRES11 Spruce - fir
FRES17 Elm - ash - cottonwood
FRES18 Maple - beech - birch
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Habitat: Plant Associations

provided by Fire Effects Information System Plants
More info on this topic.

This species is known to occur in association with the following plant community types (as classified by Küchler 1964):

More info for the terms: bog, forest

K093 Great Lakes spruce - fir forest
K094 Conifer bog
K095 Great Lakes pine forest
K096 Northeastern spruce - fir forest
K101 Elm - ash forest
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Immediate Effect of Fire

provided by Fire Effects Information System Plants
More info for the terms: cover, surface fire

Northern white-cedar is usually killed by surface fire. Large trees may
survive if ground cover is sparse.
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Importance to Livestock and Wildlife

provided by Fire Effects Information System Plants
Northern white-cedar provides food and shelter for wildlife.
White-tailed deer, snowshoe hares, and porcupines heavily browse the
foliage [26]. Northern white-cedar is one of the best winter browse
species for white-tailed deer in the northern Lake States, and it is
often overbrowsed [2]. Moose browse northern white-cedar only when
other food is scarce. In a study on Isle Royale in Michigan, northern
white-cedar constituted only 0.7 percent of the moose diet, but 5.8
percent of the available food [3].

Pileated woodpeckers feed on carpenter ants that, in turn, nest in and
feed on the heartwood of northern white-cedar [13]. Other birds that
are especially abundant in northern white-cedar forests include
white-throated sparrows, golden-crowned kinglets, yellow-bellied
flycatchers, ovenbirds, northern parulas, winter wrens, Swainson's
thrushes, and numerous warblers. Blackburnian warblers, Cape May
warblers, ovenbirds, and golden-crowned kinglets breed in the densest
stands [18].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Key Plant Community Associations

provided by Fire Effects Information System Plants
More info for the terms: bog, fen, forest, hardwood, swamp

Northern white-cedar is an important species in the wet-mesic coniferous
forests of the northern lowlands [14]. It is often present in the
ecotone between sphagnum bog and upland hardwood communities [15]. It
may dominate rich swamp forests, poor swamp forests, and the cedar
string bog and fen complex [24].

The following published classifications list northern white-cedar as
dominant or codominant:

The vegetation of Wisconsin [14]
Virgin plant communities of the Boundary Waters Canoe Area [37]
Plant communities of Voyageurs National Park, Minnesota, U.S.A. [30]
Habitat classification system for Upper Peninsula of Michigan and
northeast Wisconsin [11]
Classification and gradient analysis of forest vegetation of Cape
Enrage, Bic Park, Quebec [49]
The principal plant associations of the Saint Lawrence Valley [16]
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Life Form

provided by Fire Effects Information System Plants
More info for the term: tree

Tree
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Management considerations

provided by Fire Effects Information System Plants
More info for the terms: competition, forest, prescribed fire, tree

There is interest in regenerating northern white-cedar after harvest
because of its forage value to white-tailed deer and because of the
popularity of northern white-cedar log cabins. In the past, forest
managers have not successfully regenerated this species. Northern
white-cedar is a slow-growing species, and seedlings are frequently
damaged by heavy browsing. Many former northern white-cedar stands are
now dominated by balsam fir (Abies balsamea), spruce (Picea spp.), aspen
(Populus spp.), or speckled alder (Alnus rugosa) [31].

A combination of clearcut and shelterwood strips is currently
recommended for harvesting mature stands of northern white-cedar and
reproducing new ones, although other possible methods should be
investigated [27]. If there are less than 10 northern white-cedar
advance regeneration stems per miliacre (2.5 stems/sq m), a prescribed
fire after clearcutting is recommended to eliminate heavy slash, set
back competition, and prepare a seedbed [27,31,46]. See FIRE EFFECTS for
further details on the influence of fire on regeneration.

Sapling stands provide the most browse for deer [26]. Overbrowsing can
retard the growth and even kill a tree if it is less than 7 feet (2.1 m)
tall [2]. A high browse line is frequently evident on larger trees [9].
Fifteen to twenty percent annual usage of foliage might maintain a
constant food supply and still permit a suitable growth rate for
saplings [2]. Thinning of stands improves deer habitat and timber
quality [18].

Northern white-cedar is relatively free of serious insect injury. The
principal pests are arborvitae leafminer (Argyresthia thuiella) and
black and red carpenter ants (Camponotus pennsylvanicus and C.
ferrugineus). Northern white-cedar is affected by few serious diseases
[26].

Higher than normal water levels will reduce growth and eventually kill
trees. Beaver damming and road construction are often responsible for
impeded drainage [26,27].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Nutritional Value

provided by Fire Effects Information System Plants
Northern white-cedar browse is, on average by wet weight, 2.7 percent
protein, 5.2 percent fat, 27.5 percent carbohydrates, and 13.9 percent
crude fiber [44]. It is high in calcium [29]. The browse is considered
highly nutritious [2] and is more digestible to white-tailed deer than
bigtooth aspen (Populus grandidentata) browse [44].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Occurrence in North America

provided by Fire Effects Information System Plants
CT HI IL IN ME MD MA MI MN NH
NY OH PA RI TN VT VA WV WI MB
NB NS ON PE PQ
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Other uses and values

provided by Fire Effects Information System Plants
Northern white-cedar is widely planted as an ornamental. Northern
white-cedar leaf oil is distilled from boughs and used for perfume and
medicines. The foliage is rich in vitamin C; Native Americans and early
European explorers used it to treat scurvy [26].

Because of its long life span, northern white-cedar is a valuable
species for dendroclimatic research [5].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Palatability

provided by Fire Effects Information System Plants
Northern white-cedar browse is highly palatable to white-tailed deer
[2].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Phenology

provided by Fire Effects Information System Plants
More info on this topic.

Flower buds form in autumn and expand the following spring. Pollen is
dispersed from late April to June. Cones are full grown by mid-August,
ripen in August and September, and open 7 to 10 days after ripening.
Seeds germinate the following spring or early summer when sufficiently
high temperatures occur [26].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Plant Response to Fire

provided by Fire Effects Information System Plants
More info for the terms: competition, seed

Northern white-cedar becomes established by seed on recently burned
sites if a seed source is nearby and the exposed soil is moist
[14,34,47]. Fire serves to remove competition and also removes the moss
layer that dries out in the summer and results in seedling mortality
[31].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Post-fire Regeneration

provided by Fire Effects Information System Plants
More info for the terms: root crown, secondary colonizer

Tree without adventitious-bud root crown
Secondary colonizer - off-site seed
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Regeneration Processes

provided by Fire Effects Information System Plants
More info for the terms: adventitious, layering, organic soils, swamp, tree

Sexual reproduction: Northern white-cedar begins producing cones as
young as 6 years of age and begins producing large quantities by age 30.
The best production occurs after age 75. Good crops occur at 2- to
5-year intervals with intervening years having fair to medium crops.
Seeds have lateral wings and are disseminated by wind. Seeds are
dispersed a distance of 150 to 200 feet (45-60 m) from the source tree
[13,14,26].

Germination occurs when daytime temperatures reach about 84 degrees
Fahrenheit (29 deg C) [21]. Northern white-cedar germinates on a
variety of substrates including both mineral and organic soils, but
seedling establishment is limited to sites with a constant moisture
supply [26]. Drought is a major cause of seedling mortality [14].
Seedlings that germinate on old stumps are likely to die when the stumps
dry out in late summer, and seedlings that germinate in fast-growing
sphagnum moss (Sphagnum spp.) may be smothered [13]. Seedlings prosper
on recently burned sites [26].

Seedling growth is slow. Annual height growth averages 3 inches (8 cm)
in the first few years. Partial light is needed for continued seedling
growth [26].

Vegetative reproduction: Under favorable moisture conditions, northern
white-cedar reproduces vegetatively by layering. Seedlings may
reproduce by layering at age 5 or earlier. Layering accounts for a
considerable amount of northern white-cedar reproduction. It is common
in swamp forests where trees often fall or tip slowly. Trees
established on logs and stumps may fall as their weight increases and
the substrate rots [13,14,26].

Branches on a fallen tree that still has functional roots may begin
growing vertically. Eventually, with the increased weight of new
growth, the stem will contact the soil and put out adventitious roots
[13].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Successional Status

provided by Fire Effects Information System Plants
More info on this topic.

More info for the terms: climax, seed, succession, swamp, tree

Although northern white-cedar is generally considered shade tolerant, it
is not as tolerant as balsam fir or sugar maple (Acer saccharum).
Seedlings may only be intermediate in shade tolerance [13,26]. They can
survive severe suppression for several years, but if not released, they
die [26]. Vegetative shoots are more tolerant than seedlings. Although
some authors [6,30,31] consider northern white-cedar a climax species
because of its longevity and shade tolerance, it cannot reproduce by
seed under dense shade to any marked extent [13].

Northern white-cedar will invade and form even-aged stands in old
fields, openings created by windfall or cutting, and recently burned
swamp sites. It replaces speckled alder thickets that form in swamps
after fire or after changes in water levels [19,26]. Northern
white-cedar is a pioneer on limestone cliffs and talus slopes. The
roots grow in small pockets of organic material between rocks [49].
Northern white-cedar succeeds less tolerant, shorter lived species such
as balsam poplar, tamarack (Larix laricina), and black spruce (Picea
mariana) [26].

An uneven-aged old-growth northern white-cedar community occurs on the
Niagara Escarpment in southern Ontario. This self-sustaining population
occurs in a 3.3 to 16.4-foot (1-5 m) wide strip on the limestone cliff
edge and face [32]. Uneven-aged stands also form on poor lowland sites
where vegetative reproduction is the primary mode of reproduction [26].

Northern white cedar is often succeeded by sugar maple and other more
shade-tolerant species [1,17]. Replacement is usually tree by tree, but
major disturbance (excluding fire) can accelerate succession by
releasing shade-tolerant species [balsam fir, sugar maple, black ash
(Fraxinus nigra)] growing in the understory [1,19].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Taxonomy

provided by Fire Effects Information System Plants
The currently accepted scientific name for northern white-cedar is Thuja
occidentalis L. [33].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/

Wood Products Value

provided by Fire Effects Information System Plants
The wood of northern white-cedar is resistant to decay. It is used for
products that come in contact with water and soil, such as fence posts,
shingles, paneling, and boats [25,26]. Northern white-cedar logs are
especially popular to use for log cabins because the wood has good
insulating qualities [31]. It is also used for kraft pulp and particle
board [26].
license
cc-publicdomain
bibliographic citation
Carey, Jennifer H. 1993. Thuja occidentalis. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/